• Title/Summary/Keyword: high thermal

Search Result 9,676, Processing Time 0.036 seconds

Greenhouse Gas Mitigation Effect Analysis by Establishing Additional Heat Storage System for Combined Heat and Power Plant (열병합발전소에서의 축열조 증설에 의한 온실가스 감축 효과 분석)

  • Kim, Shang Mork;Yoon, Joong Hwan;Lim, Kyoung Mi
    • Journal of Climate Change Research
    • /
    • v.2 no.3
    • /
    • pp.175-189
    • /
    • 2011
  • In this research, we describe the methodology and the quantification about GHG reduction effects, expected by optimization of operation mode according to establishing additional heat storage system of Bundang Combined Cycle Power Plant. As an intermediate form of General Combined Cycle Power Plant and Heat supply only district heating plant, Bundang Combined Cycle Power Plant(and Ilsan, Anyang, Bucheon) is possible to satisfy demand for the electrical load and thermal load capacity at the same time through changes to the operation mode itself. Therefore, through the operating transition of high-efficiency mode that the condenser cooling water is recovered and supplied to district heat and cooling, establishing additional heat storage system have flexible supply ability at the power and heat market. In this research, We calculated using the operating performance for the last three years(2008~2010) and efficiency of each mode-specific values. As a result, GHG reduction effects were calculated as $97.95kg_{-}CO_2/Gcal$ per heat energy 1 Gcal supplied at the heat storage system and we expected emmision reduction effect about $13,500Ton_{-}CO_2/yr$.

Screening of Skin-permeable Peptide in Thermal Stabilizing Formulation Using Phage Display (파지디스플레이를 이용한 성장인자 안정화 제형 맞춤형 피부 투과 펩타이드의 개발)

  • Lee, Seol-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.326-333
    • /
    • 2018
  • In this study, we identified methods to improve heat stability and skin permeability of functional protein biopolymers, such as growth factors, enzymes, and peptides. The biopolymers participate in cellular activation and catalytic functions in vivo. Therefore, when applied to cosmetics, their efficacies are expected to be helpful for skin care. However, they have disadvantages that include instability to heat and low skin permeability due to their high molecular weight. To overcome these problems, we searched for a composition that increases heat stability. Stability was improved using a polymeric humectant having a long polyethylene glycol length, compared with a mono-molecular structure humectant. Next, to enhance skin permeation, a permeation enhancing peptide was selected from a phage library. The permeation enhancing peptide can be commonly used to promote the permeation of growth factors, enzymes, and peptides. Screening was performed on the polymeric humectant formulation. One dominant peptide from the modified-screening method was identified. Furthermore, it was confirmed that the permeability of the peptide was better than that of the peptide developed through a screening system based on phosphate-buffered saline. The data indicate that the polymeric humectant formulation will be helpful for increasing the heat stability of protein ingredients and that skin permeability could be increased by a formulation-specific, penetration-enhancing peptide.

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.

Nickel Catalysts Supported on Ash-Free Coal for Steam Reforming of Toluene (무회분탄에 분산된 니켈 촉매의 톨루엔 수증기 개질)

  • PRISCILLA, LIA;KIM, SOOHYUN;YOO, JIHO;CHOI, HOKYUNG;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;LEE, SIHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.559-569
    • /
    • 2018
  • Catalytic supports made of carbon have many advantages, such as high coking resistance, tailorable pore and surface structures, and ease of recycling of waste catalysts. Moreover, they do not require pre-reduction. In this study, ash-free coal (AFC) was obtained by the thermal extraction of carbonaceous components from raw coal and its performance as a carbon catalytic support was compared with that of well-known activated carbon (AC). Nickel was dispersed on the carbon supports and the resulting catalysts were applied to the steam reforming of toluene (SRT), a model compound of biomass tar. Interestingly, nickel catalysts dispersed on AFC, which has a very small surface area (${\sim}0.13m^2/g$), showed higher activity than those dispersed on AC, which has a large surface area ($1,173A/cm^2$). X-ray diffraction (XRD) analysis showed that the particle size of nickel deposited on AFC was smaller than that deposited on AC, with the average values on AFC ${\approx}11nm$ and on AC ${\approx}23nm$. This proved that heteroatomic functional groups in AFC, such as carboxyls, can provide ion-exchange or adsorption sites for the nano-scale dispersion of nickel. In addition, the pore structure, surface morphology, chemical composition, and chemical state of the prepared catalysts were analyzed using Brunauer-Emmett-Taylor (BET) analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, and temperature-programmed reduction (TPR).

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

A Study on The Thickness Shrinkage of Injection Molded Parts with The Variation of Injection Mold Core and Molding Materials (사출금형코어 및 성형수지 변화에 따른 두께 방향 수축률에 관한 연구)

  • Shin, Sung-Hyun;Jeong, Eui-Chul;Kim, Mi-Ae;Chae, Bo-Hye;Son, Jung-Eon;Kim, Sang-Yoon;Yoon, Kyung-Hwan;Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.17-21
    • /
    • 2019
  • In this study, selective laser sintered 3D printing mold core and metal core were used to investigate the difference of the thickness shrinkage from the gate of the injection molded part at a constant interval. SLS 3D printing mold core was made of nylon-based PA2200 powder and the metal core was manufactured by conventional machining method. As the PA2200 powder material has low strength, thermal conductivity and high specific heat characteristics compared with metal, molding conditions were set with the consideration of molten temperature and injection pressure. Crystalline resin(PP) and amorphous resin(PS) with low melting temperature and viscosity were selected for the injection molding experiment. Cooling time for processing condition was selected by checking the temperature change of the cores with a cavity temperature sensor. The cooling time of the 3D printing core was required a longer time than that of the metal core. The thickness shrinkage of the molded part compared to the core depth was measured from the gate by a constant interval. It was shown that the thickness shrinkage of the 3D printing core was 2.02 ~ 4.34% larger than that of metal core. In additions, in the case of metal core, thickness shrinkage was increased with distance from the gate, on the contrary, in the case of polymer core showed reversed aspect.

A Study on the Element Technologies in Flame Arrester of End Line (선박의 엔드라인 폭연방지기의 요소기술에 관한 연구)

  • Pham, Minh-Ngoc;Choi, Min-Seon;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2019
  • An end-line flame arrester allows free venting in combination with flame protection for vertical vent applications. End-line flame arresters are employed in various fields, especially in shipping. In flame arresters, springs are essential parts because the spring load and the spring's elasticity determine the hood opening moment. In addition, the spring has to work under a high-temperature condition because of the burning gas flame. Therefore, it is necessary to analyze the mechanical load and elasticity of the spring when the flame starts to appear. Based on simulations of the working process of a specific end-line flame arrester, a thermal and structural analysis of the spring is performed. A three-dimensional model of a burned spring is built using computational fluid dynamics (CFD) simulation. Results of the CFD analysis are input into a finite element method simulation to analyze the spring structure. The research team focused on three cases of spring loads: 43, 93, and 56 kg, correspondingly, at 150 mm of spring deflection. Consequently, the spring load was reduced by 10 kg after 5 min under a $1,000^{\circ}C$ heat condition. The simulation results can be used to predict and estimate the spring's load and elasticity at the burning time variation. Moreover, the obtained outcome can provide the industry with references to optimize the design of the spring as well as that of the flame arrester.

Effect of RTA Temperature on the Structural and Optical Properties of HfO2 Thin Films (급속 열처리 온도가 HfO2 박막의 구조적 및 광학적 특성에 미치는 효과)

  • Chung, Yeun-Gun;Joung, Yang-Hee;Kang, Seong-Jun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.497-504
    • /
    • 2019
  • We fabricated $HfO_2$ thin films using RF magnetron sputtering method, and investigated structural and optical properties of $HfO_2$ thin films with RTA temperatures in $N_2$ ambient. $HfO_2$ thin films exhibited polycrystalline structure regardless of annealing process, FWHM of M (-111) showed reduction trend. The surface roughness showed the smallest of 3.454 nm at a annealing temperature of $600^{\circ}C$ in result of AFM. All $HfO_2$ thin films showed the transmittance of about 80% in visible light range. By fitting the refractive index from the transmittance and reflectance to the Sellmeir dispersion relation, we can predict the refractive index of the $HfO_2$ thin film according to the wavelength. The $HfO_2$ thin film annealed at $600^{\circ}C$ exhibited a high refractive index of 2.0223 (${\lambda}=632nm$) and an excellent packing factor of 0.963.

Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries (리튬이차전지용 고체 전해질의 최근 진전과 전망)

  • Kim, Jumi;Oh, Jimin;Kim, Ju Young;Lee, Young-Gi;Kim, Kwang Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.87-103
    • /
    • 2019
  • Nonaqueous organic electrolyte solution in commercially available lithium-ion batteries, due to its flammability, corrosiveness, high volatility, and thermal instability, is demanding to be substituted by safer solid electrolyte with higher cycle stability, which will be utilized effectively in large-scale power sources such as electric vehicles and energy storage system. Of various types of solid electrolytes, composite solid electrolytes with polymer matrix and active inorganic fillers are now most promising in achieving higher ionic conductivity and excellent interface contact. In this review, some kinds and brief history of solid electrolyte are at first introduced and consequent explanations of polymer solid electrolytes and inorganic solid electrolytes (including active and inactive fillers) are comprehensively carried out. Composite solid electrolytes including these polymer and inorganic materials are also described with their electrochemical properties in terms of filler shapes, such as particle (0D), fiber (1D), plane (2D), and solid body (3D). In particular, in all-solid-state lithium batteries using lithium metal anode, the interface characteristics are discussed in terms of cathode-electrolyte interface, anode-electrolyte interface, and interparticle interface. Finally, current requisites and future perspectives for the composite solid electrolytes are suggested by help of some decent reviews recently reported.

Luminescence Properties of Europium-doped NaSr(PO3)3 Phosphor (Europium이 첨가된 NaSr(PO3)3형광체의 형광특성)

  • Yoon, Changyong;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.645-652
    • /
    • 2019
  • Phosphor with phosphorus doped with rare earth ions was investigated by searching Sr and Eu phosphors suitable for substitution of Eu ions with similar ionic radius to polyphosphate host. The $NaSr(PO_3)_3$ phosphor was synthesized by the solid state method and the $NaSr(PO_3)_3:Eu^{2+}$ phosphor was prepared by the carbon thermal reduction method. Both of the phosphors were identified by X - ray diffraction. The excitation and emission spectra of $NaSr(PO_3)_3:Eu^{3+}$ increased fluorescence intensity and intensity quenching with increasing $Eu^{3+}$ concentration. The higher the $Eu^{3+}$ concentration in the emission spectrum, the higher the local symmetry of $Eu^{3+}$ environment. The mechanism of concentration quenching, in which fluorescence decreases due to the energy transfer between $Eu^{2+}$ ions with the closest critical distance between $Eu^{2+}$ ions with increasing $Eu^{2+}$ ion concentration, was confirmed in the emission spectrum of $NaSr(PO_3)_3:Eu^{2+}$ concentration. It is possible to change the fluorescent region through the post-processing of single rare earth ion added phosphors, and it is possible to change the fluorescence by applying the energy transfer and concentration quenching mechanism according to the local symmetry of $Eu^{3+}$ will be used for high phosphor development.