• 제목/요약/키워드: high temperature reactors

검색결과 206건 처리시간 0.031초

Carbon-based Materials for Atomic Energy Reactor

  • Sathiyamoorthy, D.;Sur, A.K.
    • Carbon letters
    • /
    • 제4권1호
    • /
    • pp.36-39
    • /
    • 2003
  • Carbon and carbon-based materials are used in nuclear reactors and there has recently been growing interest to develop graphite and carbon based materials for high temperature nuclear and fusion reactors. Efforts are underway to develop high density carbon materials as well as amorphous isotropic carbon for the application in thermal reactors. There has been research on coated nuclear fuel for high temperature reactor and research and development on coated fuels are now focused on fuel particles with high endurance during normal lifetime of the reactor. Since graphite as a moderator as well as structural material in high temperature reactors is one of the most favored choices, it is now felt to develop high density isotropic graphite with suitable coating for safe application of carbon based materials even in oxidizing or water vapor environment. Carboncarbon composite materials compared to conventional graphite materials are now being looked into as the promising materials for the fusion reactor due their ability to have high thermal conductivity and high thermal shock resistance. This paper deals with the application of carbon materials on various nuclear reactors related issues and addresses the current need for focused research on novel carbon materials for future new generation nuclear reactors.

  • PDF

800℃ 용융염 환경에서 부식된 재료의 마모 성능 평가 (Evaluation of Wear Performance of Corroded Materials in an 800℃ Molten Salt Environment)

  • 최용석;박경렬;강성민;김운성;정경은;이지하;하태웅;이경준
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.97-102
    • /
    • 2024
  • The next-generation Molten Salt Reactor is known for its high safety because it uses nuclear fuel dissolved in high-temperature molten salt, unlike traditional solid atomic fuel methods. However, the high-temperature molten salt causes severe corrosion in internal structural materials, threatening the reactor's safety. Therefore, it is crucial to investigate the high-temperature corrosion resistance and wear performance of materials used in reactors to ensure safety. In this study, the high-temperature corrosion resistances and wear performances of corrosion samples in a NaCl-MgCl2-KCl (20-40-40 [wt%]) molten salt are investigated to evaluate the applicability of economically viable stainless steels, 316SS and 304SS. Hastelloy C276 and a new alloy containing a small amount of Nb are used as reference samples for comparative analysis. The mass loss, mass loss rate per unit volume, and surface roughness of each sample are measured to understand the corrosion mechanisms. Scanning electron microscopy and energy-dispersive spectroscopy analyses are employed to analyze the corrosion mechanisms. Wear tests on the corroded samples are also conducted to assess the extent of corrosion. Based on the experimental results, we predict the lifespans of the materials and evaluate their suitability as candidate materials for molten salt reactors. The data obtained from the experiments provide a valuable database for structural materials that can enhance the stability of molten salt reactors and recommend high-temperature corrosion-resistant materials suitable for next-generation reactors.

Hydrogen production using high temperature reactors: an overview

  • Deokattey, Sangeeta;Bhanumurthy, K.;Vijayan, P.K.;Dulera, I.V.
    • Advances in Energy Research
    • /
    • 제1권1호
    • /
    • pp.13-33
    • /
    • 2013
  • The present work is an attempt to provide an overview, about the status of R&D and current trends in Hydrogen Production using High Temperature Reactors. Bibliographic references from the INIS database, the Science Direct database and the NTIS database were downloaded and analyzed. Ten year data on the subject, published between 2001 and 2010, was selected for the study. Appropriate qued ry formulations on these databases, resulted in the retrieval of 621 unique bibliographic records. Using the content analysis method, all the records were analyzed. Part One of the analysis details Scientometric R&D indicators, Part Two is a subject-based analysis, grouped under: A. International Initiatives and Programmes for Hydrogen Production; B. European R&D initiatives for Hydrogen production; C. National Initiatives and Programmes for Nuclear Hydrogen Production; D. Reactor Technologies for Nuclear Hydrogen production; E. Fuel Developments; F. Hydrogen Production Processes using HTRs and G. Materials Consideration for Nuclear Hydrogen Production. The results of this analysis are summarized in the study.

Development of a structural integrity evaluation program for elevated temperature service according to ASME code

  • Kim, Nak Hyun;Kim, Jong Bum;Kim, Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2407-2417
    • /
    • 2021
  • A structural integrity evaluation program (STEP) was developed for the high temperature reactor design evaluation according to the ASME Boiler and Pressure Vessel Code (ASME B&PV), Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, Subsection HB. The program computerized HBB-3200 (the design by analysis procedures for primary stress intensities in high temperature services) and Appendix T (HBB-T) (the evaluation procedures for strain, creep and fatigue in high temperature services). For evaluation, the material properties and isochronous curves presented in Section II, Part D and HBB-T were computerized for the candidate materials for high temperature reactors. The program computerized the evaluation procedures and the constants for the weldment. The program can generate stress/temperature time histories of various loads and superimpose them for creep damage evaluation. The program increases the efficiency of high temperature reactor design and eliminates human errors due to hand calculations. Comparisons that verified the evaluation results that used the STEP and the direct calculations that used the Excel confirmed that the STEP can perform complex evaluations in an efficient and reliable way. In particular, fatigue and creep damage assessment results are provided to validate the operating conditions with multiple types of cycles.

CORE DESIGN CONCEPTS FOR HIGH PERFORMANCE LIGHT WATER REACTORS

  • Schulenberg, T.;Starflinger, J.
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.249-256
    • /
    • 2007
  • Light water reactors operated under supercritical pressure conditions have been selected as one of the promising future reactor concepts to be studied by the Generation IV International Forum. Whereas the steam cycle of such reactors can be derived from modem fossil fired power plants, the reactor itself, and in particular the reactor core, still need to be developed. Different core design concepts shall be described here to outline the strategy. A first option for near future applications is a pressurized water reactor with $380^{\circ}C$ core exit temperature, having a closed primary loop and achieving 2% pts. higher net efficiency and 24% higher specific turbine power than latest pressurized water reactors. More efficiency and turbine power can be gained from core exit temperatures around $500^{\circ}C$, which require a multi step heat up process in the core with intermediate coolant mixing, achieving up to 44% net efficiency. The paper summarizes different core and assembly design approaches which have been studied recently for such High Performance Light Water Reactors.

SiC 복합체 제조를 위한 화학기상침착공정에 대한 수치해석 연구 (Numerical Study on CVI Process for SiC-Matrix Composite Formation)

  • 배성우;임동원;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.61-65
    • /
    • 2015
  • SiC composite materials are usually used to very high temperature condition such as thermal protection system materials at space vehicles, combustion chambers or engine nozzles because they have high specific strength and good thermal properties at high temperature. One of the most widely used fabrication methods of SiC composites is the chemical vapor infiltration (CVI) process. During the process, chemical gases including Si are introduced into porous preform which is made by carbon fibers for infiltration. Since the processes take a very long time, it is important to reduce the process time in designing the reactors and processes. In this study, both the gas flow and heat transfer in the reactors during the processes are analyzed using a computational fluid dynamics method in order to design reactors and processes for uniform, high quality SiC composites. Effects of flow rate and heater temperature as process parameters to the infiltration process were examined.

음식물쓰레기의 호기성 퇴비화에 있어서 볏짚과 하수슬러지케이크가 미치는 영향에 관한 비교 연구 (Comparison of Effects of Rice Straw and Sewage Sludge Cake on Aerobic Composting of Food Wastes)

  • 박석환
    • 한국환경보건학회지
    • /
    • 제29권1호
    • /
    • pp.43-50
    • /
    • 2003
  • This study was performed to compare the effects of rice straw and towage sludge cake as bulking materials on temperature, pH, weight and volume reduction, porosity, C/N ratio, salinity, and conductivity in aerobic composting of food wastes. Volume ratios of food wastes to rice straw in reactor control, RS-1, RS-2, RS-3 and RS-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Weight ratios of food wastes to sewage sludge rake in reactor control, SL-1, SL-2, SL-3 and SL-4 were 4:0, 4:1, 4:2, 4:3 and 4:4, respectively. Reactors were operated for 24 days with 1 hour stirring by 1 rpm and 2 hours aeration per day. The values of pH of food waters, rice straw and sewage sludge cake were 4.39, 7.40 and 5.79, respectively. The lowering of the volume ratio of food wastes to rice straw resulted in the high reaction temperature and the fast weight and volume reduction rates. The lowering of the weight ratio of food wastes to sewage sludge cake resulted in the slow weight and volume reduction rates. C/N ratio in control was larger than that in rice straw containing reactors, and that in rice straw containing reactors was larger than that in sewage sludge cake containing reactors. Salinity and conductivity in reactors were condensed and increased by reaction days.

Stable In-reactor Performance of Centrifugally Atomized U-l0wt.%Mo Dispersion Fuel at Low Temperature

  • Kim, Ki-Hwan;Kwon, Hee-Jun;Park, Jong-Man;Lee, Yoon-Sang;Kim, Chang-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.365-374
    • /
    • 2001
  • In order to examine the in-reactor performance of very-high-density dispersion fuels for high flux performance research reactors, U-l0wt.%Mo microplates containing centrifugally atomized powder were irradiated at low temperature. The U-l0wt.%Mo dispersion fuels show stable in- reactor irradiation behaviors even at high burn-up, similar to U$_3$Si$_2$ dispersion fuels. The atomized U-l0wt.%Mo fuel particles have a fine and a relatively uniform fission gas bubble size distribution. Moreover, only one of third of the area of the atomized fuel cross-sections at 70a1.% burn-up shows fission gas bubble-free zones, This appears to be the result of segregation into high Mo and low Mo.

  • PDF