• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.034 seconds

Vapor Pressure and Miscibility for R474A/POE Oil Mixtures (R-404A/POE 오일 혼합물의 증기압과 혼화성)

  • 이정훈;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.4
    • /
    • pp.285-292
    • /
    • 2002
  • The vapor pressure and miscibility measurement apparatus was developed and used to obtain data for refrigerant/oil mixture. The vapor pressure and miscibility data for R-404A/32 ISO VG polyol ester (POE) oil mixture and R-404A/46 ISO VG polyol ester oil mixture are obtained over the temperature range from -20 to $60^{\circ}$ with at $10^{\circ}$ intervals and the oil concentration range from 0 to 70 wt%. Using the experimental data, an empirical model was developed to predict the temperature vapor pressure-concentration relations for R-404A/46 ISO VG polyol ester oil mixtures at equilibrium. In the R-404A/32 ISO VG polyol ester oil mixture, the average root-mean-square deviation between measured data and calculated results from the empirical model is 1.24% and in the R-404A/46 ISO VG polyol ester oil mixture, that is 1.37%. Miscibility for R-404A/32 ISO VG polyol ester oil mixture was observed all over the experimental conditions. Immiscibility for R-404A/So1est 46 oil mixture was observed at the low oil concentrations (20~30 wt%) over the high experimental temperature range (50~$60^{\circ}$).

Synthesis of Aromatic and Aliphatic Compound from Kraft Oak Lignin and Acetosolve Straw Lignin by Thermochemical Liquefaction (참나무 크라프트 리그닌과 볏짚 아세토솔브 리그닌의 열-화학적 분해에 의한 방향족(Aromatic)과 지방족(Aliphatic)화합물의 합성)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Kraft oak lignin and ricestraw lignin from acetosolve pulping were dissolved in 50/50 mixture of tetralin/m-cresol solvent. The dissolved lignin was reacted in the pressurized autoclave which was operating at $350{\sim}500^{\circ}C$ of reaction temperature and 10~20 atms of reaction pressure respectively_Hydrogen pressure of 60~80kg/$cm^2$ was exercising into the pressurized autoclave reactor to create thermochemical hydrogenolysis reaction. It was identified by GLC, GC-MS and HPLC that the alkyl-aryl-${\beta}$-O-4 ether bond of lignin was cleaved and degraded into various smaller molecules of aromatic compound such as phenols and cresols under the reaction conditions around $300^{\circ}C$ and 10 atms of reaction temoerature and pressure. Hydrogenolysis reaction of lignin compound which was done above $500^{\circ}C$ of reaction temperature and 20 atms of reaction pressure showed that the amount of aromatic compound such as phenols and cresols degraded from reactant lignin was decreasing with newly present and increasing water out of product mixtures. It was supposed that new aliphatic compound of high molecular weight hydrocarbon is composed due to higher reaction temperature and pressure of hydrogenolysis reaction such as $500^{\circ}C$ and 20 atms, even though it was almost impossible, to identify what kind of degraded products it was by HPLC.

  • PDF

Characteristics of $TiH_2$ under High Pressure (고압하에서 $TiH_2$의 특성화 연구)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.72-78
    • /
    • 1992
  • The Earth outer core accomodates moderately considerable amount of lighter elements than pure iron itself. Hydrogen is one of the possible candidates of minor constituents in the outer core. It would be worth while to extend for the pressure effect on the solubility of hydrogen in the metal-hydrides including iron hydride. In view of hydrogen being one of the potential substitutes for petroleum, searching a more efficient way for storing hydrogen in the form of hydrides is of considerable value. For two purposes, $TiH_2$was selected among lot of hydrides for its characteristics under pressure and temperature. There have been two kinds of experiment carried out on $TiH_2$ under different experimental conditions. As one of these attempts, polycrystalline $TiH_2$ was loaded up to 15 GPa stepwise at the constant temperature 500${\circ}$ using a piston-cylinder diamond anvil cell equipped with a miniature furnace of an electric power supply. The X-ra diffraction technique was employed on the quenched samples after the simultaneous high pressure and temperature treatments. During these high pressure-temperature runs, and irreversible phase of $TiH_2$ has been observed at the pressures higher than 11.3 GPa, which would be assigned to the orthorhombic crystal system as one of the new phase(s) of $TiH_2$. Molar volume change on this phase transition is ∼10%.

  • PDF

Growth of $In_{0.53}Ga_{0.47}As$ Iattice matched to Inp substrate by low pressure metalorganic chemical vapor deposition (저압 유기금속 화학증착법을 이용한 InP 기판에 격자 일치된 $In_{0.53}Ga_{0.47}As$ 에피층의 성장)

  • 박형수;문영부;윤의준;조학동;강태원
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.206-212
    • /
    • 1996
  • $In_{1-x}Ga_xAs$ epitaxial layers were grown at 76 Torr by low pressure metalorganic chemical vapor deposition (LP-MOCVD). Growth rate did not change much with growth temperature. Surface morphology of $In_{1-x}Ga_xAs$ epitaxial layer was affected by lattice mismatch, growth temperature and $AsH_3/(TMIn+TMGa)$ ratio. A high quality epilayer showed a full width at half maximum of 2.8 meV by photoluminescence measurement at 5K. The composition of the $In_{1-x}Ga_xAs$ was determined by the relative gas phase diffusion of TMIn and TMGa. Lattice mismatch and growth temperature were the most important variables that determine the electrical properties of $In_{1-x}Ga_xAs$ epitaxial layers. At optimized growth condition, it was possible to obtain a high quality $In_{1-x}Ga_xAs$ epilayers with a electron concentration as low as $8{\times}10^{14}/cm^3$ and an electron mobility as high as 11,000$\textrm{cm}^2$/Vsec at room temperature.

  • PDF

Numerical Study on Comparison of Serpentine and Parallel Flow Channel in High-temperature Proton Exchange Membrane Fuel Cells (고온형 고분자전해질형 연료전지에서의 사형 유로와 평행 유로 성능비교에 대한 수치해석적 연구)

  • AHN, SUNGHA;OH, KYEONGMIN;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • General polymer electrolyte fuel cell (PEMFC) operates at less than $80^{\circ}C$. Therefore liquid phase water resulting from electrochemical reaction accumulates and floods the cell which in turn increases the mass transfer loss. To prevent the flooding, it is common to employ serpentine flow channel, which can efficiently export liquid phase water to the outlet. The major drawback of utilizing serpentine flow channel is the large pressure drop that happens between the inlet and outlet. On the other hand, in the high temperature polymer electrolyte fuel cell (HT-PEMFC), since the operating temperature is 130 to $180^{\circ}C$, the generated water is in the state of gas, so the flooding phenomenon is not taken into consideration. In HT-PEMFCs parallel flow channel with lower pressure drop between the inlet and outlet is employed therefore, in order to circulate hydrogen and air in the cell less pumping power is required. In this study we analyzed HT-PEMFC's different flow channels by parallel computation using previously developed 3-D isothermal model. All the flow channels had an active area of $25cm^2$. Also, we numerically compared the performance of HT-PEMFC parallel flow channel with different manifold area and Rib interval against the original serpentine flow channel. Results of the analysis are shown in the form of three-dimensional contour polarization curves, flow characteristics in the channel, current density distribution in the Membrane, overpotential distribution in the catalyst layer, and hydrogen and oxygen concentration distribution. As a result, the performance of a real area fuel cell was predicted.

A Study on the Sintering of Diamond Composite at Low Temperature Under Low Pressure and its Subsequent Conductive PVD Process for a Cutting Tool (절삭 공구용 다이아몬드 복합체의 저온 저압 소결 합성 및 후속 도전형 박막 공정 특성 연구)

  • Cho, Min-Young;Ban, Kap-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.25-32
    • /
    • 2020
  • Generally, high-temperature, high-pressure, high-priced sintering equipment is used for diamond sintering, and conductivity is a problem for improving the surface modification of the sintered body. In this study, to improve the efficiency of diamond sintering, we identified a new process and material that can be sintered at low temperature, and attempted to develop a composite thin film that can be discharged by doping boron gas to improve the surface modification of the sintered body. Sintered bodies were sintered by mixing Si and two diamonds in different particle sizes based on CIP molding and HIP molding. In CVD deposition, CVD was performed using WC-Co cemented carbide using CH4 and H2 gas, and the specimen was made conductive using boron gas. According to the experimental results of the sintered body, as the Si content is increased, the Vickers hardness decreases drastically, and the values of tensile strength, Young's modulus and fracture toughness greatly increase. Conductive CVD deposited diamond was boron deposited and discharged. As the amount of boron added increased, the strength of diamond peaks decreased and crystallinity improved. In addition, considering the release processability, tool life and adhesion of the deposition surface according to the amount of boron added, the appropriate amount of boron can be confirmed. Therefore, by solving the method of low temperature sintering and conductivity problem, the possibility of solving the existing sintering and deposition problem is presented.

Vertical Atmospheric Structure and Sensitivity Experiments of Precipitation Events Using Winter Intensive Observation Data in 2012 (2012년 겨울철 특별관측자료를 이용한 강수현상 시 대기 연직구조와 민감도 실험)

  • Lee, Sang-Min;Sim, Jae-Kwan;Hwang, Yoon-Jeong;Kim, Yeon-Hee;Ha, Jong-Chul;Lee, Yong-Hee;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.187-204
    • /
    • 2013
  • This study analyzed the synoptic distribution and vertical structure about four cases of precipitation occurrences using NCEP/NCAR reanalysis data and upper level data of winter intensive observation to be performed by National Institute of Meteorological Research at Bukgangneung, Incheon, Boseong during 63days from 4 JAN to 6 MAR in 2012, and Observing System Experiment (OSE) using 3DVAR-WRF system was conducted to examine the precipitation predictability of upper level data at western and southern coastal regions. The synoptic characteristics of selected precipitation occurrences were investigated as causes for 1) rainfall events with effect of moisture convergence owing to low pressure passing through south sea on 19 JAN, 2) snowfall events due to moisture inflowing from yellow sea with propagation of Siberian high pressure after low pressure passage over middle northern region on 31 JAN, 3) rainfall event with effect of weak pressure trough in west low and east high pressure system on 25 FEB, 4) rainfall event due to moisture inflow according to low pressures over Bohai bay and south eastern sea on 5 MAR. However, it is identified that vertical structure of atmosphere had different characteristics with heavy rainfall system in summer. Firstly, depth of convection was narrow due to absence of moisture convergence and strong ascending air current in middle layer. Secondly, warm air advection by veering wind with height only existed in low layer. Thirdly, unstable layer was limited in the narrow depth due to low surface temperature although it formed, and also values of instability indices were not high. Fourthly, total water vapor amounts containing into atmosphere was small due to low temperature distribution so that precipitable water vapor could be little amounts. As result of OSE conducting with upper level data of Incheon and Boseong station, 12 hours accumulated precipitation distributions of control experiment and experiments with additional upper level data were similar with ones of observation data at 610 stations. Although Equitable Threat Scores (ETS) were different according to cases and thresholds, it was verified positive influence of upper level data for precipitation predictability as resulting with high improvement rates of 33.3% in experiment with upper level data of Incheon (INC_EXP), 85.7% in experiment with upper level data of Boseong (BOS_EXP), and 142.9% in experiment with upper level data of both Incheon and Boseong (INC_BOS_EXP) about accumulated precipitation more than 5 mm / 12 hours on 31 January 2012.

Absorption of CO2 Using Mixed Aqueous Solution of N-methyldiethanolamine with Piperazine for Pre-combustion CO2 Capture (연소전 이산화탄소 포집을 위한 N-methyldiethanolamine과 Piperazine 혼합 수용액의 이산화탄소 흡수)

  • Jang, Won Jin;Yoon, Yeo Il;Park, Sang Do;Rhee, Young Woo;Baek, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.645-651
    • /
    • 2008
  • In this study, the new solubility data at high pressure condition applicable to pre-combustion $CO_2$ capture system were found. Experiments were conducted within the temperature range of $40{\sim}80^{\circ}C$ while increasing the pressure from 0 to 50 bar. The effect of MDEA (N-methyldiethanolamine) concentration was studied by varying the concentration from 30 to 50 wt%. In order to improve the absorption rate of MDEA, piperazine was added in ranging of 5~10 wt% into the MDEA solution as a activator. From this experiment, the equilibrium partial pressure was increased with increasing MDEA concentration in absorbent and reaction temperature. Also absorption rate was increased with increasing the reaction temperature. It was noted that the mixture of piperazine and MDEA aqueous solution showed faster absorption rate by 2.5 times than only the MDEA aqueous solution with 40 wt% cencentration at initial reaction stage and also increased absorption capacity by 16%.

Optimization of Batch Expression of Sesame Oil (참기름의 회분식 착유의 최적화)

  • 민용규;정헌상
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.785-789
    • /
    • 1995
  • In order to optimize the batch expression of sesame oil, recovery of expressed oil(REO) from roasted and unroasted sesame seeds were observed at different temperature, pressure, pressing duration and moisture content, and relatinship between REO and effects of expression factors were analysed. REO was high at 2.5~4.5% moisture content, 30~$50^{\circ}C$ and 30~50MPa, and decreased abruptly with increasing moisture content above 4.5%. The optimum temperature, pressure, pressing duration and moisture content were $40.1^{\circ}C$, 54.4MPa, 21.7min and 1.3% for unroasted seeds and $44.4^{\circ}C$, 37.8MPa, 14.4min and 2.52% for roasted seeds, respectively. REO in optimum condition was 84.6% in unroasted seed and 81.7% in roasted seed. From the statistic analysis between effects of expression factors and REO, importance of their effects was decreased in the order of moisture content, pressure, temperature and pressing duration. And also interaction effects were high in $pressure{\times}moisture$ content, $temperature{\times}moisture$ content and temperature pressure. The multiple regression equation between REO(Y) and temperature(T), pressure(P), moisture content(M), and pressing duration(D) were as follows ; $Y=18.20$ $35.66P$$24.52M-4.45P^{2}-1.20TM-4.02PM-6.62M^{2},\;r^{2}=0.89$, for unrosated sesame seed, $Y=117.93$$16.40P-58.61M-2.75P^{2}$$1.79TM-1.65PM$$7.16M^{2},\;r^{2}$$=0.91$ for roasted sesame seed.

  • PDF

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook;Yun, Young-Mok
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.