• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.032 seconds

Expansion of Operating Range and Reduction of BSFC in Low Temperature Diesel Combustion with Boosting (과급을 이용한 저온 디젤 연소의 운전영역 확장 및 연료소비율 저감)

  • Shim, Eui-Joon;Han, Sang-Wook;Jang, Jin-Young;Park, Jung-Seo;Bae, Choong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3013-3018
    • /
    • 2008
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range, brake specific fuel consumption (BSFC) and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range. The result showed that operating range with boost was expanded up to 41.9% compared to naturally aspirated LTC condition due to increased mixing intensity. The boosted LTC engine showed low BSFC value and dramatically reduced soot emission under all operating range compared with high speed direct injection (HSDI) mode. Finally, this paper presents the boosted LTC map of emission and the strategy of improved engine operating range.

  • PDF

Tribological Characteristics with Concentration ZnDTP Additives in Automotive Engine (자동차 엔진의 ZnDTP 첨가제 농도에 따른 트라이볼로지 특성)

  • Oh, Seong-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.697-702
    • /
    • 2007
  • The lubricational characteristics about friction and wear has an important effect on the material quality of surface. Therefore, in the case of automobile engine oil which is used under severe running condition, or therefore, the seizure and anti-scuffing is very important. We have studied the lubricational characteristics of auto engine oil with additives using Falex wear test machine. We have obtained the studied result is as fellows. In order to more improved the surface roughness characteristics adding the P(phosphate) as additives is excellent at a low temperature. Adding the ZnDTP and Ca-phenate is excellent on the anti-wear and extreme pressure properties at the high load. Moreover, when the ZnDTP and P are added, the temperature properties is excellent because the stability is maintained in a high temperature.

  • PDF

Development of the Spherical Flange used in a Cryogenic High Pressure Pipe (극저온 고압 배관용 구형 플랜지 개발)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.283-288
    • /
    • 2011
  • The spherical flange was designed to apply to a cryogenic high pressure pipe of the Liquid Rocket Engine. It is designed that the spherical flange is able to be assembled and kept airtight upto $2.5^{\circ}$ of the axial misalignment between the combined components. It increases the degree of freedom of the engine assembly. The spherical flange is composed of a ball and socket joint, a metal seal and spherical type bolts, washers. The prototype was verified by leak test at the room temperature and the cryogenic temperature. Additionally the strength test and the destructive test were performed at the room temperature.

  • PDF

Development of the Spherical Flange Used in a Cryogenic High Pressure Pipe (극저온 고압 배관용 구형 플랜지 개발)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Lee, Soo-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.64-69
    • /
    • 2011
  • The spherical flange was designed to apply to a cryogenic high pressure pipe of a liquid rocket engine. It is designed that the spherical flange is able to be assembled and kept airtight up to $2.5^{\circ}$ of the axial misalignment between the combined components. It increases the degree of freedom of the engine assembly. The spherical flange is composed of a ball and socket joint, a metal seal, spherical type bolts and washers. The prototype was verified by leak test at the room temperature and the cryogenic temperature. Additionally the strength test and the destructive test were performed at the room temperature.

A Study on Thermal Design of Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen (극저온 고압액체수소 공급용 인쇄기판 열교환기의 열설계에 관한 연구)

  • SOHN, SANGHO;CHOI, BYUNG-IL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.347-355
    • /
    • 2021
  • This paper is a study on the thermal design of printed circuit heat exchanger (PCHE) to supply cryogenic high pressure liquid hydrogen stored from hydrogen liquefaction process by using computational fluid dynamics (CFD). This PCHE should be thermally designed to raise the temperature of cryogenic liquid hydrogen to a desired temperature and also to be anti-icing to avoid any local freezing in hot channel. This research presents the effect of inlet velocity and inlet temperature of hydrogen, and the effect of flow configurations of co/counter-flow on thermal design of PCHE heat exchanger based on various CFD simulation analysis.

Measurement of the Ar Recovery Time of a Cryopump and Analysis on the Ar Instability (크라이오펌프 알곤 회복시간 측정과 알곤 불안정성 분석)

  • In, Sang Ryul;Lee, Dong Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.225-230
    • /
    • 2013
  • Cryopump removes gas molecules by condensation and adsorption. Therefore, cryo-surface temperature and corresponding vapor pressure influence directly the pumping performance. If the surface temperature of any part is neither low nor high, there occurs the desorption of gas molecules condensed or adsorbed, and the emitted molecules can be captured again, which leads to a time-consuming and fluctuating change of the pressure. Though every gas can show such a pressure instability at a specified temperature range, the instability generated in a sputter system using Ar as a working gas and operating with a cryopump is especially undesirable. In this paper the cause of the argon instability is analyzed and corrective is provided through the measurement of the Ar recovery time.

Effects of Temperature and Pressure on Quartz Dissolution

  • Choi, Jung-Hae;Chae, Byung-Gon;Kim, Hye-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Deep geological disposal is the preferred storage method for high-level radioactive waste, because it ensures stable long-term storage with minimal potential for human disruption. Because of the risk of groundwater contamination, a buffer of steel and bentonite layers has been proposed to prevent the leaching of radionuclides into groundwater. Quartz is one of the most common minerals in earth's crust. To understand how deformation and dissolution phenomena affect waste disposal, here we study quartz samples at pressure, temperature, and pH conditions typical of deep geological disposal sites. We perform a dissolution experiment for single quartz crystals under different pressure and temperature conditions. Solution samples are collected and the dissolution rate is calculated by analyzing Si concentrations in a solution excited by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). After completing the dissolution experiment, deformation of the quartz sample surfaces is investigated with a confocal laser scanning microscope (CLSM). An empirical formula is introduced that describes the relationship between dissolution rate, pressure, and temperature. These results suggest that bentonite layers in engineering barrier systems may be vulnerable to thermal deformation, even when exposed to higher temperatures on relatively short timescales.

Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM

  • Eltaher, Mohamed A.;Attia, Mohamed A.;Soliman, Ahmed E.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.97-111
    • /
    • 2018
  • Cracking can lead to unexpected sudden failure of normally ductile metals subjected to a tensile stress, especially at elevated temperature. This article is raised to study the application of a composite material instead of the traditional carbon steel material used in the natural gas transmission pipeline because the cracks occurs in the pipeline initiate at its internal surface which is subjected to internal high fluctuated pressure and unsteady temperature according to actual operation conditions. Functionally graded material (FGM) is proposed to benefit from the ceramics durability and its surface hardness against erosion. FGM properties are graded at the radial direction. Finite element method (FEM) is applied and solved by ABAQUS software including FORTRAN subroutines adapted for this case of study. The stress intensity factor (SIF), temperatures and stresses are discussed to obtain the optimum FGM configuration under the actual conditions of pressure and temperature. Thermoelastic analysis of a plane strain model is adopted to study SIF and material response at various crack depths.

Effects of Pressure Assisted Mild Thermal Treatment on Inactivation of Escherichia coli ATCC 10536 in Milk Suspension

  • Park, S.H.;Hong, G.P.;Min, S.G.;Choi, M.J.
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.310-316
    • /
    • 2009
  • In this study, the influence of pressure assisted mild thermal inactivation (PAMTI) on E. coli ATCC 10536 was examined at 200 MPa and temperature range of $20-50^{\circ}C$. Inactivation rate significantly increased (p<0.05) as temperature and time increased at 200 MPa. The maximum inactivation (7.91 log reduction) was obtained at $50^{\circ}C$ for 30 min under 200 MPa, which meant the complete inactivation of E. coli ATCC 10536. Inactivation kinetics were evaluated with the first order inactivation rate (k), activation energy ($E_a$), thermal death time (TDT), and z value. Kinetic parameters were significantly (p<0.05) influenced by variation temperature of PAMTI. In this study, the synergistic effect of pressure and temperature were found in the inactivation of E. coli ATCC 10536 through PAMTI.

Thermodynamics of 2, N-Dimethyl Pyridinium Iodide in Ethanol-Water Mixture under High Pressure

  • Jee, Jong-Gi;Lee, Young-Hwa;Woo, Eui-Ha;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.115-119
    • /
    • 1983
  • The ionic association constants (K) of 2, N-dimethyl pyridinium iodide (2NDMPI) in 95 volume percentage ethanol-water mixture were determined by a modified UV and conductance method at $20^{\circ}C{\sim}50^{\circ}C$ under 1 to 2000 bars. The K values increase with increasing pressure and decrease with temperature. The total partial molar volume change (${\Delta}V$) has relatively small negative value and the absolute ${\Delta}V$ value decrease with increasing pressure and temperature. The ion size (a) and solvation number (n) of 2NDMPI were about 5 $\AA$ and changed from 1 to 3 with decreasing temperature. Other thermodynamic parameters such as enthalpy (${\Delta}H^{\circ}$) and entropy (${\Delta}S^{\circ}$) for the equilibrium of the 2NDMPI were evaluated. From all the parameters mentioned above, we came to conclusion that the electrostriction effect of 2NDMPI in the ethanol-water mixture is enhanced with increasing pressure and decreasing temperature.