• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.035 seconds

Enthalpy Rise for Pressure Loss of Spacer Grids of Dual Coolant Fuel (이중냉각연료에서 지지격자의 압력손실에 대한 엔탈피 증가)

  • Chun, Kun-Ho;Chun, Tae-Hyun;Shin, Chang-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3473-3478
    • /
    • 2007
  • A dual side cooling annular fuel having internal and external coolant channels has many advantages basically due to low fuel temperature and high DNBR margin, which can make a significant increase of core power density possible. So recently a 12x12 square annular fuel array was proposed for the fuel assembly to be reloaded without structural interference with operating reactors of OPR-1000s. Even through the inherent potential of the annular fuel on the high power density, it may be seriously eroded in the case of a severe unbalanced mass flux split to the internal and external channels in standpoint of DNB. Mass flux split is determined pressure drop characteristics between inner and outer channels. The spacer grids binding fuel array influence greatly the pressure drop in outer channels and the mass flux split. As an important factor of DNB behavior, the enthalpy differences at both channel exits were evaluated using the mass flux splits.

  • PDF

A study of high-power density laser welding process considering surface tension and recoil pressure (표면장력과 후압을 고려한 고에너지밀도 레이저 용접공정 해석)

  • Ha, Eung-Ji;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1190-1195
    • /
    • 2004
  • In this study, numerical investigation has been performed on the evolution of key-hole geometry during high-energy density laser welding process. Unsteady phase-change heat transfer and fluid flow with the surface tension and recoil pressure are simulated. To model the overheated surface temperature and recoil pressure considering subsonic/sonic vapor flow, the one-dimensional vaporization models proposed by Ganesh and Knight are coupled over liquid-vapor interface. It is shown that the present model predicts well both the vaporization physics and the fluid flow in the thin liquid layer over the other model.

  • PDF

Investigation on the Self-ignition of High-pressure Hydrogen in a Tube between Different Inner Diameter (튜브 직경에 따른 고압 수소의 자발 점화 현상에 대한 연구)

  • Kim, Sei Hwan;Jeung, In-Seuck;Lee, Hyoung Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.23 no.1
    • /
    • pp.36-43
    • /
    • 2018
  • Numerical simulations and experiments are performed to investigate the flame development inside tubes with different diameters at the same burst pressure. It is shown that generation of a stable flame play a role in self-ignition. In the smaller tube, multi-dimensional shock interaction is occurred near the diaphragm. After flame of a cross-section is developed, stable flame remains for a moment then it grows having enough energy to overcome the sudden release at the exit. Whereas shock interaction generate complex flow further downstream for a larger tube, it results in stretched flame. This dispersed flame has lower average temperature which makes it easily extinguished.

Experimental and Numerical Study on the Hydrogen Refueling Process (고압 수소 충전 시스템에 대한 실험 및 수치해석)

  • Lee, Taeck-Hong;Kim, Myoung-Jin;Park, Jong-Kee
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.342-347
    • /
    • 2007
  • The research on production and application of hydrogen as an alternative energy in the future is being carried out actively. It hydrogen storage is necessary in order that user use hydrogen economically without much difficulty. Among the ways of hydrogen storage the method which is compressed hydrogen gas by high pressure is easier for application than other methods. In this study, we have been calculated gas with changing pressure and temperature variation of container wall through applied to mass and energy balance equation when compressing hydrogen by high pressure, and also to Beattie-Bridgeman equation of state for the kinetic of hydrogen. We will apply above date as a preliminary for design of hydrogen storage tank.

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.

Oxygen Pressure Dependence of Structural and Electrical Characteristics of PLZT Thin Films Prepared by a PLD (PLD 법으로 제작된 PLZT 박막의 산소압에 따른 구조 및 전기적 특성)

  • Jang, Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.927-933
    • /
    • 2006
  • The structural and electrical characteristics of PLZT thin films fabricated onto $Pt/IrO_2/Ir/Ti/SiO_2/Si$ substrates by a pulsed laser deposition were investigated to develop the high dielectric thin films for capacitor layer of semiconductor memory devices The slim region 14/50/50 PLZT thin films were fabricated by PLD and estimated the characteristics for memory application 14/50/50 PLZT thin films have crystallize into perovskite structure at the $600^{\circ}C$ deposition temperature, 200 mTorr of oxygen pressure, and 2 $J/cm^2$ of laser energy density. In this condition PLZT thin films had the dielectric constant as high as 985, storage charge density 8.17 ${\mu}C/cm^2$ and charging time 0.20 ns. Leakage current density was less than $10^{-10}A/cm^2$ up to 5 V bias voltage.

Characteristics of Catalytically Supported Combustion for Gas Turbine Catalytic Combustor;Effects of the inlet shape of catalytic burner (가스터빈용 촉매 연소기를 위한 촉매-화염 복합 연소 특성연구;촉매버너 입구 형상의 영향)

  • Lee, Kyung-Won;Chung, Nam-Jo;Ryu, In-Soo;Cho, Sung-June;Seo, Yong-Seog;Kang, Sung-Kyu;Song, Kwang-Sup;Chun, Kwang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.71-79
    • /
    • 2002
  • The characteristics of the catalytically supported combustion with Pd and Pd/Pt based catalyst using the bench-scaled high pressure combustor have been investigated up to 5atm. This study aimed to investigate combustion characteristics of the stable flame attached to the exit of catalyst bed and NOx emissions with respect to the position of axial and radial direction in the combustor. NOx emissions were increased along the axial distance after the catalyst bed exit and radially decreased from the center to the wall of the combustor. At the higher pressure, the NOx emission decreased slightly due to the lower flame temperature in the combustor at the high pressure.

  • PDF

Preliminary Structural Sizing of the Co-axial Double-tube Type Primary Hot Gas Duct for the Nuclear Hydrogen Reactor (수소생산용 원자로에서 동심축 이중관형 1차 고온가스덕트의 예비 구조정산)

  • Song, Kee-nam;Kim, Y-W
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2008
  • Very High Temperature Gas Cooled Reactor (VHTR) has been selected as a high energy heat source for nuclear hydrogen generation. The VHTR can produce hydrogen from heat and water by using a thermo-chemical process or from heat, water, and natural gas by steam reformer technology. A co-axial double-tube primary hot gas duct (HGD) is a key component connecting the reactor pressure vessel and the intermediate heat exchanger (IHX) for the VHTR. In this study, a preliminary design analysis for the primary HGD of the nuclear hydrogen system was carried out. These preliminary design activities include a determination of the size, a strength evaluation and an appropriate material selection. The determination of the size was undertaken based on various engineering concepts, such as a constant flow velocity model, a constant flow rate model, a constant hydraulic head model, and finally a heat balanced model.

  • PDF

Basic Study on the Application of a Computational Technique to Behavior Characteristics Analysis of the Evaporative Diesel Spray (증발디젤분무의 거동특성해석을 위한 계산기법 적용에 관한 기초 연구)

  • Yeom, J.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-12
    • /
    • 2010
  • In this study, an analysis of evaporative diesel spray and an usefulness of a general-purpose program, ANSYS CFX release 11.0, are investigated through the comparison and investigation of the experimental results carried out under an evaporative field, in which there is phase transition, by an exciplex fluorescence method and the results analyzed by the CFX program. The diesel fuel called n-Tridecane, $C_{13}H_{28}$, is injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant volume chamber under a high temperature and pressure. In the same condition as the experimental condition, the analysis was carried out. Both results of the spray tip penetration were almost coincident at each time. The results have validated the usefulness of this analysis. As a result, if the ambient pressure is high, the spray tip penetration will be shortened and move toward the nozzle exit.

ROSA/LSTF test and RELAP5 code analyses on PWR steam generator tube rupture accident with recovery actions

  • Takeda, Takeshi
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.981-988
    • /
    • 2018
  • An experiment was performed for the OECD/NEA ROSA-2 Project with the large-scale test facility (LSTF), which simulated a steam generator tube rupture (SGTR) accident due to a double-ended guillotine break of one of steam generator (SG) U-tubes with operator recovery actions in a pressurized water reactor. The relief valve of broken SG opened three times after the start of intact SG secondary-side depressurization as the recovery action. Multi-dimensional phenomena specific to the SGTR accident appeared such as significant thermal stratification in a cold leg in broken loop especially during the operation of high-pressure injection (HPI) system. The RELAP5/MOD3.3 code overpredicted the broken SG secondary-side pressure after the start of the intact SG secondary-side depressurization, and failed to calculate the cold leg fluid temperature in broken loop. The combination of the number of the ruptured SG tubes and the HPI system operation difference was found to significantly affect the primary and SG secondary-side pressures through sensitivity analyses with the RELAP5 code.