• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.04 seconds

Thermodynamic Characteristics of Snowfall Clouds using Dropsonde Data During ICE-POP 2018 (ICE-POP 2018 기간 드롭존데 자료를 활용한 강설 구름의 열역학적 특성)

  • Jung, Sueng-Pil;Lee, Chulkyu;Kim, Ji-Hyoung;Yang, Hyo Jin;Yun, Jong Hwan;Ko, Hee Jong;Hong, Seong-Eun;Kim, Seung-Bum
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2020
  • The aircraft observation campaign was performed to investigate thermodynamic conditions of snowfall cloud over the East Sea of Korean peninsula from 2 February to 16 March 2018. During this period, four snowfall events occurred in the Yeongdong region and three cases were analyzed using dropsonde data. Snowfall cases were associated with the passage of southern low-pressure (maritime warm air mass) and expansion of northern high-pressure (continental polar air mass). Case 1 and Case 2a were related to low-pressure systems, and Case 2b and Case 3 were connected with high-pressure systems, respectively. And their thermodynamic properties and horizontal distribution of snowfall cloud were differed according to the influence of the synoptic condition. In Case 1 and Case 2a, atmospheric layers between sea surface and 350 hPa contained moisture more than 15 mm of TPW with multiple inversion layers detected by dropsonde data, while the vertical atmosphere of Case 2b and Case 3 were dry as TPW 5 mm or less with a single inversion inversion layer around 750~850 hPa. However, the vertical distributions of equivalent potential temperature (θe) were similar as moist-adiabatically neutral condition regardless of the case. But, their values below 900 hPa were about 10 K higher in Case 1 and Case 2a (285~290 K) than in Case 2b and Case 3 (275~280 K). The difference in these values is related to the characteristics of the incoming air mass and the location of the snowfall cloud.

Space Business and Applications of Vacuum Technology (우주개발과 진공기술의 응용)

  • Lee, Sang-Hoon;Seo, Hee-Jun;Yoo, Seong-Yeon
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.270-277
    • /
    • 2008
  • Vacuum is any air or gas pressure less than a prevailing pressure in an environmental or, specifically, any pressure lower than the atmospheric pressure and is used by a wide variety of scientists and engineering - including clean environment, thermal insulation, very long mean free path, plasma, space simulation[1]. The space environment is characterized by such a severe condition as high vacuum, and very low and high temperature. Since a satellite will be exposed to such a space environment as soon as it goes into its orbit, space environmental test should be carried out to verify the performance of the satellite on the ground under the space environmental conditions. A general and widely used method to simulate the space environment is using a thermal vacuum chamber which consists of vacuum vessel and thermally controlled shroud. As indicated by name of vacuum chamber, the vacuum technology is applied to design and manufacture of the thermal vacuum chamber. This paper describe the vacuum technology which is applied to space business.

High Pressure Behavior Study of the Apophyllite (KF) (고압 하에서 어안석(KF)의 거동 연구)

  • Kim, Young-Ho;Choi, Jinwon;Heo, Sohee;Jeong, Nangyeong;Hwang, Gil Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2015
  • Apophyllite (KF)($K_{0.84}Ca_{3.99}Si_{7.70}O_{20}F_{0.72}{\cdot}8H_2O$), one of the sheet silicates, was compressed up to 7.7 GPa at ambient temperature and 15 high pressure data were obtained. Lattice parameters of the starting specimen were as follows: $a_0=8.954(2)\;{\AA}$, $c_0=15.795(2)\;{\AA}$, $V_0=1266.4(4)\;{\AA}^3$. Symmetrical diamond anvil cell was employed with synchrotron radiation in the mode of angular dispersive X-ray diffraction. Bulk modulus was determined to be 59(4) GPa when ${K_0}^{\prime}$ is 4. No clear first order phase transition symptom was observed in the series of XRD pattern. However, second-order phase transition cannot be ruled out from the correlation between normalized pressure and strain.

A Study on Heat Transfer and Pressure Drop Characteristics according to Block Size and Turbulence Generator's Placement in a Horizontal Channel (블록 크기 및 난류발생기 배치에 따른 수평채널내의 열전달 및 압력강하 특성에 관한 연구)

  • Seo, Kyu-Won;Lim, Jong-Han;Yoon, Jun-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.639-647
    • /
    • 2019
  • Recently, as the semiconductor integration technology due to miniaturization and high density of electronic equipment have developed, it is importantly recognized the application of thermal control system in order to release inner heat generated from chips, modules, In this study, we considered the heat transfer and pressure drop characteristics in a horizontal channel with four blocks using k-${\omega}$ SST turbulence model During CFD (Computational Fluid Dynamics) analysis, the parameters applied block width, block height, heat source and turbulence generator placement etc. As the boundary conditions of analysis, the channel inlet temperature and flow velocity were respectively 300 K and 3.84 m/s, the heat flux was $358W/m^2$. As a result, the heat transfer performance was decreased as the block width ratio (w/h) was increased, while it was increased as the block height ratio (h/w) was increased. In addition, as the arrangement of heat source size was increased to high heat flux from low heat flux, it was influenced by heat source size and the heat transfer coefficient showed a tendency to increase, When the turbulence generator was installed in the upper part of block No. 1 position the closely to the channel entrance, the heat transfer characteristics was greatly influenced on the whole of four heating blocks. and in oder to consider the pressure drop characteristics, we are able to select the most appropriate turbulence generator's position.

A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether (디메틸에테르 초임계 유체를 이용한 고분자량 폴리락티드 스테레오 콤플렉스의 제조)

  • Bibi, Gulnaz;Jung, Youngmee;Lim, Jong Choo;Kim, Soo Hyun
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.453-460
    • /
    • 2015
  • Engineering the polylactide via stereocomplexation with supercritical fluid (SCF) technology paved way to fabricate polymers with enhanced thermal and mechanical properties. We aimed to establish a SCF medium with excellent solubility for PLA without any additional solvent/co-solvent. We, therefore, employed supercritical dimethyl ether to synthesize 100% stereocomplex polylactide from high molecular weight homopolymers with an excellent yield. The remarkable solubility of the homopolymers in dimethyl ether is the key for quick conversion to s-PLA. This study proves a rapid synthesis route of dry s-PLA powder with sc-DME at 250 bar, $70^{\circ}C$ and 1.5 h, which are reasonably achievable processing parameters compared to the conventional methods. The degree of stereocomplexation was evaluated under the effect of pressures, temperatures, times, homopolymer-concentrations and molecular weights. An increment in the degree of stereocomplexation was observed with increased temperature and pressure. Complete conversion to s-PLA was obtained for PLLA and PDLA with $M_n{\sim}200kg{\cdot}mol^{-1}$ with a total homopolymer to total DME ratio of 6:100% w/w at prescribed reaction conditions. The degree of stereocomplexation was determined by DSC and confirmed by XRD. Considerable improvement in thermo-mechanical properties of s-PLA was observed. DSC and TGA analyses proved a $50^{\circ}C$ enhancement in melting transition and a high onset temperature for thermal degradation of s-PLA respectively.

The quality investigation of 6H-SiC crystals grown by conventional PVT method with various SiC powders

  • Yeo, Im-Gyu;Lee, Won-Jae;Shin, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.113-114
    • /
    • 2009
  • Silicon carbide is one of the most attractive and promising wide band-gap semiconductor material with excellent physical properties and huge potential for electronic applications. Up to now, the most successful method for growth of large SiC crystals with high quality is the physical vapor transport (PVT) method [1, 2]. Since further reduction of defect densities in larger crystal are needed for the true implementation of SiC devices, many researchers are focusing to improve the quality of SiC single crystal through the process modifications for SiC bulk growth or new material implementations [3, 4]. It is well known that for getting high quality SiC crystal, source materials with high purity must be used in PVT method. Among various source materials in PVT method, a SiC powder is considered to take an important role because it would influence on crystal quality of SiC crystal as well as optimum temperature of single crystal growth, the growth rate and doping characteristics. In reality, the effect of powder on SiC crystal could definitely exhibit the complicated correlation. Therefore, the present research was focused to investigate the quality difference of SiC crystal grown by conventional PVT method with using various SiC powders. As shown in Fig. 1, we used three SiC powders with different particles size. The 6H-SiC crystals were grown by conventional PVT process and the SiC seeds and the high purity SiC source materials are placed on opposite side in a sealed graphite crucible which is surrounded by graphite insulation[5, 6]. The bulk SiC crystal was grown at $2300^{\circ}C$ of the growth temperature and 50mbar of an argon pressure. The axial thermal gradient across the SiC crystal during the growth is estimated in the range of $15\sim20^{\circ}C/cm$. The chemical etch in molten KOH maintained at $450^{\circ}C$ for 10 min was used for defect observation with a polarizing microscope in Nomarski mode. Electrical properties of bulk SiC materials were measured by Hall effect using van der Pauw geometry and a UV/VIS spectrophotometer. Fig. 2 shows optical photographs of SiC crystal ingot grown by PVT method and Table 1 shows electrical properties of SiC crystals. The electrical properties as well as crystal quality of SiC crystals were systematically investigated.

  • PDF

Preparation of Porous K2Ti6O13 Whisker Preform by Spark Plasma Sintering (방전 플라즈마 소결법에 의한 다공성 육티탄산 칼륨 휘스커 프리폼의 제조)

  • Lee, Chang-Hun;Cho, Dong-Choul;Cho, Won-Seung;Lee, Chi-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1197-1202
    • /
    • 2002
  • In order to develope the porous $K_2Ti_6O_13$ whisker preform with good strength, the pore characteristics and compressive strength were investigated as a function of spark plasma sintering temperature. As a result, high porous whisker preform were successfully fabricated by sintering at 900∼950${\circ}C$ for 10 min under a pressure of 40 MPa, heating rate of 50${\circ}C$/min and on-off pulse type of 12:2. The whisker preform prepared under above optimum condition showed relatively high compressive strength of 174∼266 MPa, despite of high porosity ranging from 15% to 37%. This improvement in strength was considered to be mainly due to the spark-plasma discharges and the self-heating action between whiskers. The compressive strength of whisker preform, fabricated at sintering temperature less than 900${\circ}C$, showed 80∼100 MPa. This is low strength level less than one half times compared with whisker preform fabricated at 900∼950${\circ}C$. The whisker preform fabricated at 1000${\circ}C$ showed the highest compressive strength of 523 MPa, but resulted in low porosity of ∼5%. Based on above results, it was considered that spark plasma sintering was an effective method for developing high strength and porosity of whisker preform.

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성)

  • Lee, Kyoung-Seok;Seo, Sung-Ho;Jin, Sang-Hyun;Yoo, Bong-Young;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant (냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성)

  • Kim, Dongkyun;Kim, Jongyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.