• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.039 seconds

General Idea of NGH and NGH Carrier (NGH 특성 및 NGH 수송선 개요)

  • Kang, Gon;Lee, Sang-Su;Kim, Jung-Hoon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.13-14
    • /
    • 2011
  • Methane Hydrates or Natural Gas Hydrates (hereinafter NGH) are solid-state energy source formed by the clathration of methane gas in water molecules at low temperature and high pressure. NGH is also known as "burning ice" because of its burning property and appearance similar to that of dry ice. Today, concerns about the NGH are rising as an environment-friendly energy source that can replace fossil fuels. In this paper, to keep pace with the research and development of the NGH, the properties of the NGH and the general features of NGH carriers are introduced.

  • PDF

Equivalent Elastic Modulus for Lined Pipe Analysis (Lined Pipe 해석을 위한 등가 탄성계수 계산)

  • 정진한;최재승;하대홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.547-550
    • /
    • 2000
  • The steel pipe for fluid catalytic cracking(FCC) unit. petroleum refinery, is lined with refractory to protect the system from high-temperature of the internal flow. The property of the refractory has an effect upon the stress analysis of FCC unit. Because 1-D pipe element or 3-D shell element are usually used in commercial codes of stress analysis to evaluate the structural soundness, the equivalent elastic modulus considering steel and refractory should be applied. In the research, the theoretical method to obtain the value of the equivalent property is introduced and then the stress analysis is carried out with the part of FCC unit.

  • PDF

A Numerical Analysis of Supersonic Impinging Jet Flows on Curved Surfaces using Upwind Wavier-Stokes Method (Upwind Navier-Stokes 방법을 이용한 굴곡면에 충돌하는 초음속 제트유동의 수치 해석적 연구)

  • Seo Jeong Il;Song Dong Joo
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.229-232
    • /
    • 2002
  • For the purpose of Thermal Protection Material design problem, a numerical analysis of axisymmetric high temperature supersonic impinging jet flows of exhaust gas from combustor on curved surfaces has been accomplished. A modifed CSCM Upwind Navier-Stokes method which is able to cure the carbuncle Phenomena has been developed to study strong shock wave structure and thermodynamic wall properties such as pressure and heat transfer rate on various curved surfaces. The results show that the maximum heat transfer rate which is the most important parameter affecting thermo-chemical surface ablation on the plate did not occur at the center of jet impingement, but rather on a circle slightly away from the center of impingement and the shear stress distribution alone the wall is similar to the wall heat transfer late distribution.

  • PDF

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

A Study on the Improvement of Double Injection-molding Keypad Process (이중 사출 키패드 성형 공정 개선에 관한 연구)

  • Hong, Min-Sung;Lee, Ji-Hoon;Shin, Soo-Hyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.659-665
    • /
    • 2011
  • Recently, the plastic resin such as PC, ABS are widely used in IT market. Especially, in most cases the keypads mounted on the mobile phone are the dual-injection-plated type. Environmental regulation is based on the quality of injection-molded products and the minimum process steps are required to avoid the plating defects. Various parameters to produce the injection-molded plastic products make it difficult to obtain the desired stability. However, the past experience and the use of CAE analysis make it possible to predict the problems occurred in injection molding process. Especially, the problems of the weld lines such as runner balancing, bending, deformation and forming defects can be solved systematically and minimized by CAE analysis. Through this study, the non-uniform volumetric shrinkage and the difference in temperature distribution induce the deformation and the high value of stress causes the problems such as crack.

An Investigation on the Spray Characteristics of Steady/Plused Jet in Crossflow in Model Ramjet Combustor (모델 램제트 연소기 내에서의 정상/가진 수직 분무 특성 연구)

  • Kim, Jin-Ki;Song, Jin-Kwan;Kim, Min-Ki;Yoon, Young-Bin;Hwang, Yong-Seok
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.99-106
    • /
    • 2008
  • In this study, spray characteristics research of steady/pulsed injection in crossflow was performed experimentally in the model ramjet combustor. High-speed-camera photography was performed through a visualization window of model combustor, and then, steady and pulsed spray structures were observed and analyzed. Varying influx air temperature and fuel species, we could obtain the trajectory correlation in the steady injection case. In the experiment of pulsed injection, it is found that the pulsed frequency hardly influences spray trajectory. Also, it is found that, in the same injection pressure differential, the trajectory correlation of steady condition can be used for estimating pulsed spray trajectory.

  • PDF

A study on the optimum molding of plastic pulley using numerical analysis (수치해석을 이용한 플라스틱 풀리 성형품의 최적 성형에 관한 연구)

  • Kim, Kyung-A;Han, Seong-Ryeol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.30-35
    • /
    • 2020
  • Plastic pulleys used for the purpose of power transmission have to very high roundness characteristics. The roundness of plastic pulleys is influenced by many factors. In this study, the effect of molding conditions on the roundness of pulleys was analyzed using a numerical analysis program. To improve the roundness, molding conditions that minimize the amount of deformation of the pulley were studied through an experimental design method. Among the experimental design methods, the Taguchi method was used, and the main molding conditions affecting the deformation of the pulley were the resin temperature and the holding pressure. It was found that the amount of deformation is reduced by about 2.86% when molding with the optimum molding conditions compared to when the optimum molding conditions are not applied.

Structural Characteristic of One Dimensional Single Crystalline of InN Nanowires (1차원 InN 단결정 나노선의 구조특성에 대한 고찰)

  • Byeun, Yun-Ki;Chung, Yong-Keun;Lee, Sang-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.202-207
    • /
    • 2007
  • High-Quality 1-Dimensional InN single crystalline have been grown by Halide Vapor-Phase Epitaxy on the Au catalyst coated Si substrate using the vapor-liquid-solid growth mechanism. We have been grown 1-dimension InN nanowires having controlled the growth conditions for substrate temperature and gases flow rate. The grown InN nanowire of characteristics for morphologies, crystal structure, and element analysis were carried out by SEM, HR-TEM, and EDS respectively. And the defects of InN crystalline were analyzed by indexing of selective area diffraction pattern with attached HR-TEM. We have successfully obtained the defect-free 1-dimensional InN single crystalline nanowire at the atmosphere pressure.

Manufacturing of Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition Reactor and Si Wafer Surface Cleaning by Hydrogen Plasma (초고진공 전자 사이클로트론 공명 화학 기상증착장치의 제작과 수소 플라즈마를 이용한 실리콘 기판 표면 세정화)

  • 황석희;태흥식;황기웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.63-69
    • /
    • 1994
  • The Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition(UHV-ECRCVD) system whose base pressure is 1${\times}10^{9}$ torr has been constructed. In-situ cleaning prior to the epitaxial growth was carried out at 56$0^{\circ}C$ by ECR generated uniform hydrogen plasma whose density is $10^{10}/cm{3}$. The natural oxide was effectively removed without damage by applying positive DC bias(+10V) to the substrate. RHEED(Reflection High Energy Electron Diffraction) analysis has been used to confirm the removal of the surgace oxide and the streaky 2$\times$1 reconstruction of the Si surface, and the suppression of the substrate damage is anaylized by X-TEM(cross-sectional Transmission Electron Microscopy). Surface cleaning technique by ECR hydrogen plasma confirmed good quality epitaxial growth at low temperature.

  • PDF

A Numerical Optimization Study on the Ventilation Flows in a Workshop (작업장 환기장치 최적화 유동 연구)

  • 엄태인;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.64-73
    • /
    • 1995
  • A preliminary study is performed in order to design an effective ventilation equipment for the control of possible pollutants in a workshop. To this end, the Patankar's SIMPLE methodology is used to investigate the flow characteristics of the contaminated thermal deflected jet which is encounted often in practical hood system. SIMPLE-Consistent algorithm is employed for the pressure-velocity coupling appeared in momentum equations. A two equation, k-$\varepsilon$ model is used for Reynolds stresses. The prediction data is compared well against the experimental results by Chang(1989). Considering the control of the wake due to its high turbulence together with the stagnant feature has been investigated in term of major parameters such as temperature and magnitude of the discharge velocity. Detailed discussions are made to reduce the size of the wake region which give rise to pollutant concentration stratification.

  • PDF