• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

Cooling Efficiency of Low Pressure Compressed Air Fogging System in Naturally Ventilated Greenhouses (저압 에어포그 시스템을 설치한 온실의 냉방효율)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo;Ko, Gi-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.49-55
    • /
    • 2012
  • In order to derive the efficient utilization of low pressure compressed air fogging system, cooling efficiencies with control types were analyzed through cooling experiments in tomato greenhouses. The control types were set up with temperature control, humidity control, temperature and humidity control, and time control. It showed that the cooling effects were 0.7 to $3.3^{\circ}C$ on average and maximum of 4.3 to $7.0^{\circ}C$, the humidification effects were 3.5 to 13.5 % on average and maximum of 14.3 to 24.4 %. Both the cooling and humidification effect were the highest in the time control method. The cooling efficiency of the air fogging system was not high with 8.3 to 27.3 % on average. However, the cooling efficiency of 24.6 to 27.3 % which appears from the time control is similar to the cooling efficiency of high pressure fogging system experimented in Japan. The air fogging system is operated by low pressure, but its efficiency is similar to high pressure. We think because it uses compressed air. From this point of view, we suggest that the air fogging system can get the cooling efficiency of similar levels to that of high pressure fogging system and it will have an advantage from clogging problem of nozzle etc.

Densification of Mo Nanopowders by Ultra High Pressure Compaction (초고압 성형을 통한 Mo 나노 분말의 치밀화)

  • Ahn, Chi Hyeong;Choi, Won June;Park, Chun Woong;Lee, Seung Yeong;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

A Study on the Thermal Characteristics of High Pressure Hydrogen Storage Tank according to Nozzle Angle and Length/Diameter Ratio (고압수소 저장용기의 노즐 각도 및 길이/직경비에 따른 열적 특성 연구)

  • JEONG HWAN YOON;JUNYEONG KWON;KYUNG SOOK JEON;JIN SIK OH;SEUNG JUN OH
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.5
    • /
    • pp.431-438
    • /
    • 2023
  • Recently, study on hydrogen is being conducted due to environmental pollution and fossil fuel depletion. High-pressure gas hydrogen commonly used is applied to vehicle and tube trailers. In particular, high-pressure hydrogen storage tank for vehicles must comply with the guidelines stipulated in SAE J2601. There is a charging temperature limitation condition for the safety of the storage tank material. In this study, numerical analysis method were verified based on previous studies and the nozzle angle was changed for thermal management to analyze the increase in forced convection effect and energy uniformity due to the promotion of circulation flow. The previously applied high-pressure hydrogen storage tank has a length/diameter ratio of about 2.4 and was analyzed by comparing the length/diameter ratio with 8. As a result, the circulation flow of hydrogen flowing into the high-pressure hydrogen storage tank is promoted at a nozzle angle of 30° than the straight nozzle and accordingly, the effect of suppressing temperature rise by energy uniformity and forced convection was confirmed.

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

Numerical Modeling for Vaporization, Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 증발, 점화 및 분무연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

Numerical Modeling for Auto-ignition and Combustion Process of Fuel Sprays in High-Pressure Environment (고압 분무 연소장에서 연료 분무의 자발화 및 연소 과정 해석)

  • Yu, Y.W.;Kang, S.M.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.5 no.4
    • /
    • pp.66-71
    • /
    • 2000
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in the high-pressure engine conditions. The high-pressure vaporization model is developed to realistically simulate the spray dynamics and vaporization characteristics in high-pressure and high-temperature environment. The interaction between chemistry and turbulence is treated by employing the Representative Interactive Flamelet (RIF) Model. The detailed chemistry of 114 elementary steps and 44 chemical species is adopted for the n-heptane/air reaction. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the multiple RIFs are introduced. Numerical results indicate that the RIF approach together with the high-pressure vaporization model successfully predicts the ignition delay time and location as well as the essential features of a spray ignition and combustion processes.

  • PDF

A Study on the Flow Characteristic of surroundings of the Extracting Nozzle for Shell Wall Thinning of a Feedwater Heater (고압형 급수가열기 동체 감육 완화를 위한 추기노즐 주변의 유동특성 연구)

  • Seo, Hyuk-Ki;Kim, Yoon-Shin;Kim, Kyung-Hun;Hwang, Kyeong-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.841-846
    • /
    • 2009
  • Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied several impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

  • PDF

Numerical Modeling for Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 점화 및 연소특성 해석)

  • Lee, J.W.;Ryu, L.S.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.16-25
    • /
    • 2005
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet(RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

Evaluation of High Temperature Structural Integrity of Intermediate Heat Exchanger in a Steady State Condition for PGSFR (PGSFR중간열교환기의 정상상태 고온 구조 건전성 평가)

  • Lee, Seong-Hyeon;Koo, Gyeong-Hoi;Kim, Sung-Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2016
  • Four cylindrically shaped IHXs(Intermediate Heat Exchangers) are installed in the PHTS(Primary Heat Transfer System) of the PGSFR(Prototype Gen IV Sodium cooled Fast Reactor). As for the IHX, the temperature difference of structure is inevitable result caused by heat transfer between primary coolant sodium and IHTS(Intermediate Heat Transport System) sodium. It is necessary to evaluate the high temperature structural integrity of IHXs which operate at the elevated temperature condition over the creep temperature. In this paper, the high temperature structural integrity of IHX under assumed loading conditions has been reviewed according to ASME code.

Relationship between Korean Drought and North Pacific Oscillation in May (한국 5월 가뭄과 북태평양진동의 연관성)

  • Choi, Ki-Seon;Kim, Do-Woo;Lee, Ji-Sun;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.67-78
    • /
    • 2009
  • A strong negative correlation has been detected between the North Pacific Oscillation Index (NPI) and the Effective Drought Index (EDI) in May over Korea. In May of positive NPI year, anomalous patterns caused a drought in Korea as follows: the anomalous south-low, north-high low-level pressure patterns in the northeast and southeast of Korea have strengthened the anomalous northerlies to Korea. In addition, these anomalous northerlies have prevented western North Pacific (WNP) high from moving northward. As a result, anomalous descending flows have strengthened in the mid-latitude region in East Asia. In the WNP, the anomalous south-high, north-low sea surface temperature (SST) has been widely distributed, which has strengthened anomalous south-low, north-high low-level pressure patterns. These anomalous characteristics of pressure and SST patterns observed in May of positive NPI years have already been detected in previous winter (December-February) and early spring (March, April). In addition, the anomalous negative sea ice concentration in the North Pacific during two seasons has strengthened the anomalous anticyclonic circulation in the same region and in turn made a contribution to formation of anomalous south-low, north-high pressure patterns in May.