• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.036 seconds

The Study of formation of LiCoO$_2$thin film electrode by RF-MSP (RF-MSP에 의한 LiCoO$_2$박막전극의 형성에 관한 연구)

  • 김상필;이우근;김익수;하홍주;박정후;조정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.167-170
    • /
    • 1995
  • LiCoO$_2$is a electrode material of Li ion Cell which is expected as the cell with a very high electric charge density. The recent study is mainly to focused on a high power secondary cell. If very thin Li ion Cell can be made in the scale of IC substrate it can be a electric souse in IC chip , micro machine or very thin electrical display etc. LiCoO$_2$thin film can be made by CVD, Laser ablation, E-Beam, ton Beam process, sputtering etc. But to make the material with a high quality for a cell is difficult as the electrode in cell have the fitable ratio in components and a lattice structure of bulk etc. In this study, LiCoO$_2$is made by R.F magnetron sputtering with the variance of substrate temperature and oxygen partial pressure etc. In the substrate temperature of 600$^{\circ}C$ and the oxygen rate of 10%, we can acquire the good thin film LiCoO$_2$compared wish a bulk material.

  • PDF

Study on the Multi-measuring Method for Evaluation of Internal Leak of Power Plant Valve (발전용 밸브누설 평가를 위한 다중계측 연구)

  • Lee, S.G.;Park, S.K.;Park, J.H.;Kim, K.H.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.35-40
    • /
    • 2007
  • Leak would happen because of the damage of high temperature and high-pressure valve in nuclear power plant. condition based prevention maintenance is essential by using the suitable method based on local condition. Energy loss prevention can prevent from an accurate test, Local actually and ability. The methods of test for high energy fluid leak at present are analysis of ${\Delta}T$, AE(Acoustic Emission) analysis, and thermal image. The result for test of secondary system in nuclear power plant Unit reveals that the AE occurred clearly in leakage situation, but thermal image didn't occur. It is identified that leak is occurred when the orifice located front and back of valve operates. It shows that making a impatient judgment by using the single method if it is leakage is containing uncertainty. So we think that using the Multi-Measuring method is more sound judgment than single-measuring method.

  • PDF

Evaluation of the High Temperature Degradation of the Rotor of a 500 MW Tandem Steam Turbine (500 MW급 텐덤형 스팀 터빈 로터의 고온 열화평가)

  • Ku, Dae-Hwan;Yoo, Ho-Sun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2014
  • The metallographic examination and hardness measurements were conducted for the rotor of the 500 MW tandem steam turbine of Unit 4 in Dangjin Thermal Power Plants at the locations of steam inlet where the high temperature steams pass; high and intermediate pressure turbines. Creep cavity and degradation levels of optical micrographs of them are observed. The remaining life time of 201,523h for the rotor of the 500 MW tandem steam turbine of Unit 4 in Dangjin Thermal Power Plants was determined by the results of the inspection.

  • PDF

Constructability of a Waterproofing Sheet Joint Combining an Aluminum Thin-film and Viscosity Layer Using a High-frequency Inductive Heating Apparatus (고주파 유도가열 장치를 이용한 알루미늄 박판 점착 복합방수시트 조인트부의 시공성)

  • Chang, Sang Mook;Kim, Yun Ho;Choi, Sung Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2014
  • Engineers in the construction field have been using bonded waterproofing sheets in an attempt to resolve the imbalance in the quality, the risk of fire, safety of workers, and environmental pollution, as well as to eliminate separate use of organic adhesives on the surface of concrete. Recently, self-laminated waterproofing sheets have been developed. The purpose of this research is to find an appropriate processing speed according to the changes in physical properties, and visual observation of the waterproofing sheets laminated by the aluminum thin-film and viscosity layer that can be attached through self-adhesiveness on the surface of concrete and waterproofing sheets. Therefore, this research is conducted using a physical performance test. Based on the result of the test, when the high-frequency inductive heating apparatus was used, an improved adhesion and bonding stability effect were confirmed after the anti-hydrostatic pressure and bond strength in the temperature condition, and the surface observation in the processing speed condition.

Evaluation on Mechanical Properties of Tungsten by Sintering Additive Content (소결첨가재에 의한 텅스텐의 기계적 특성평가)

  • Lee, Sang-Pill;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.621-626
    • /
    • 2022
  • Tungsten is a high melting point metal unlike other steel materials, and it is difficult to manufacture because of its high melting temperature. In this study, pressure sintering process method was applied to manufacture the tungsten materials at low temperature. Therefore, it is necessary to densify the sintered material by using a sintering additive. Studies have been conducted on how the amount of titanium for sintering tungsten affects the mechanical properties of tungsten in this study. In order to secure the densification mechanism of tungsten powder during the sintering process, the characteristics of the sintered tungsten material according to the change of titanium content were evaluated. It was investigated the relationship between sintering parameters and mechanical properties for densification of microstructures. The sintered tungsten materials according to sintering additive content showed high sintered density (about 16.31g/cm3) and flexural strength (about 584 MPa) when the content of sintering additive was 3 wt%. However, as the content of the sintering additive increases, mechanical property of flexural strength is decreased, and the porosity is increased due to the heterogeneous sintering around titanium.

High Functional $GdB_2C_3O_{7-x}$ Thin Films Fabricated by Pulsed Laser Deposition

  • Song, S.H.;Ko, K.P.;Song, K.J.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.15-18
    • /
    • 2006
  • REBCO coated conductors (RE: rare earth elements) have recently drawn great attention since they are known to possess stronger flux pinning centers in high magnetic fields compared with YBCO coated conductors. In this study, $GdBa_2Cu_3O_{7-d}(GdBCO)$ was selected to investigate the influence of the distance between target and substrate and substrate temperature on the superconducting properties of GdBCO films on the $SrTiO_3(100)$ substrate. Samples were fabricated by pulsed laser deposition (PLD) with a Nd:YAG laser (355nm). Under a given oxygen pressure of 800mTorr, we changed the distance between target and substrate from 5.5cm to 7.0cm and the substrate temperature from $750^{\circ}C\;to\;850^{\circ}C$. The crystallinity and texture of GdBCO films were analyzed by X-ray diffraction (XRD), and the surface morphology was observed by the scanning electron microscopy (SEM). Tc and Jc values were measured by the four point probe method. High quality GdBCO films with Tc of 89.7K and Jc over $1MA/cm^2$ at 77 K in self field were successfully fabricated by optimizing processing parameters. The detailed processing conditions, microstructure and superconducting properties will be presented for a discussion.

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC (현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정)

  • Seon-Ju Kim;Beom-Joo Lee;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.

Effect of Body Fat on Thermophysiological Responses at a Hot Environment (체지방률이 서열환경하의 온열생리에반응에 미치는 효과)

  • Kim, Hee-Eun;Kim, Seong-Suk
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • The Purpose of this study was to investigate the effect of body fat on thermophysiological responses and subjective sensations under hot environment. Fifteen female college students volunteered as subjects. Subjects were organized into three groups - low body fat group(L group : less than 20% of body fat), medium body fat group(M group : 20%~30% of body fat) and high body fat group(H group : More than 30% of Body fat). The experiment was carried out in a climate chamber of $32^{\circ}C$, 60%RH with the repeat of having 'Exercise' and 'Rest' period. The results of this study are as follows ; Rectal temperature maintained higher in M group and L group than in H group in the period of exercise 1. High body fat was so effective in keeping the core temperature, it seems that as was usually the case in cold environment. The mean skin temperature was the lowest value in H group but the ratio of mean skin temperature change was clearly high value in H group. The above facts indicated that thermophysiological response occurs rapidly in H group. Blood pressure, pulse rate and metabolic rate of H group showed the highest values and those of L group showed the lowest value in all period of experiment. Effective of sweating rate was higher in H group than other groups. In subjective sensations, The H group felt more pleasant and comfortable than M group. With these results in mind, people of H group responses more actively for thermal regulation in a hot environment, and these leads H group to feel more pleasant and comfortable.

Growth of Organic/Inorganic MAPbI3 Perovskite Thin Films via Chemical Vapor Deposition (화학 기상 증착법을 이용한 유/무기 MAPbI3 페로브스카이트 박막 성장)

  • Jung, Jang-Su;Eom, Jiho;Pammi, S.V.N.;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.315-320
    • /
    • 2020
  • Methylammonium lead iodide (MAPbI3) thin films were grown at low temperatures on glass substrates via 3-zone chemical vapor deposition. Lead iodide (PbI2) and lead bis (dipivaloylmethanate) [Pb(dpm)2] precursors were used as lead sources. Due to the high sublimation temperature (~400℃) of the PbI2 precursor, a low substrate temperature could not be constantly maintained. Therefore, MAPbI3 thin films degraded into the PbI2 phase. In contrast, for the Pb(dpm)2 precursor, a substrate temperature of ~120℃ was maintained because the sublimation temperature of Pb(dpm)2 is as low as 130℃ at a high vapor pressure. As a result, high-quality MAPbI3 thin films were successfully grown on glass substrates using Pb(dpm)2. The rms (root-mean-square) roughness of MAPbI3 thin films formed from Pb(dpm)2 was as low as ~19.2 nm, while it was ~22.7 nm for those formed using PbI2. The grain size of the films formed from Pb(dpm)2 was as large as approximately 350 nm.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.