• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.034 seconds

An Experimental Study on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling (전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Choi, Mi-Jin;Cha, Dong-An;Yun, Jae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2432-2437
    • /
    • 2007
  • The demand of high speed and miniaturization of electronic devices results in increased power dissipation requirement for thermal management. In this work, the effects of microchannel width, height and liquid flowrate on the cooling performances of microchannel waterblock are investigated experimentally. The microchannel waterblock considered ranged in width from 0.5 to 0.9 mm, with the channel height being nominally 1.7 to 9 times the width in each case. The experiments were conducted using water, over a liquid flow rate ranging from 0.2 to 2.0 lpm. The base temperature, thermal resistance and pressure drop increase with increasing of liquid flow rate. The measured thermal resistances ranged from 0.10 to 0.23 $^{\circ}C$/W for the channel 5.

  • PDF

Influence of Temperature and Pressure on Graphene Synthesis by Chemical Vapor Deposition (CVD법을 이용한 그래핀합성에 미치는 온도와 압력의 영향)

  • Lee, Eun Young;Kim, Sungjin;Jun, Heung-Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.1
    • /
    • pp.7-16
    • /
    • 2015
  • The fabrication of high quality graphene using chemical vapor deposition (CVD) method for application in semiconductor, display and transparent electrodes is investigated. Temperature and pressure have major impact on the growth of graphene. Graphene doping was obtained by deposition of $MoO_3$ thin films using thermal evaporator. Bilayer graphene and the metal layer graphene were obtained. According to the behavior of graphene growth P-type doping was confirmed. Graphene obtained through experiments was analyzed using optical microscopy, Raman spectroscopy, UV-visible light spectrophotometer, 4-point probe sheet resistance meter and atomic force microscopy.

Evaluation of Thermal Fluid Characteristics for EGR Cooler with Spiral Type (Spiral 구조 EGR Cooler의 열유동 특성 평가)

  • 허형석;원종필;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.44-50
    • /
    • 2003
  • Cooled EGR is an effective method for the reduction of NOx from a diesel engine and an EGR Cooler is the key component of the system. High efficiency, low pressure loss and compactness are required for the EGR Cooler. To meet these requirements, new geometric tube must be developed. In this paper, a full size EGR cooler test bench has been developed to validate the CFD flow and heat transfer models. Fluid temperature and pressure drop measurements are provided. fillet temperature is $200^{\circ}C$ and $300^{\circ}C$, and flow rates vary from 0.008 kg/sec to 0.019 kg/sec. The gas flow and heat transfer in a single tube cooler have been studied using computational fluid dynamics(CFD). Analysis has been carried out in a single tube with a plain tube and six spirally enhanced tubes of varying pitch to depth ratio(p/e).

Hydrodesulfurization of Dibenzothiophene by Sulfided $Ni-W/\gamma-Al_2O_3$ Catalyst (황화 $Ni-W/\gamma-Al_2O_3$ 촉매에 의한 Dibeenzothiophene의 수첨탈황반응)

  • 김경림;정지원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.51-59
    • /
    • 1986
  • Hydrodesulfurization of dibenzothiophene (DBT) dissolved in n-heptane was studied over sulfided $Ni - W/\gamma - Al_2O_3$ catalyst at temperature ranges from 513 to 573 K and at pressure ranges from 20 to 60 x $10^5$ Pa. Hydrogenation of biphenyl (BP) and cyclohexylbenzene (CHB) observed in products were also run. The products were almost biphenyl and cyclohyxylbenzene, and the conversion of DBT was very sensitive to temperature. Concerning the products distribution while the formation of biphenyl decreased, the formation of cyclohexylbenzene increased in the range of high pressure. The reaction network was found to be sequential reaction which formed cyclohexybenzent through the intermediate of biphenyl. The disappearances of DBT and biphenyl were the first order with respect to DBT and biphenyl and their activation energys were 24.3 and 13.6 Kcal/mol, respectively.

  • PDF

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Fabrication of 1.3$\mu$m InGaAsP/InP uncooled-LD using low pressure MOVPE (저압 유기금속 기상화학증착법에 의한 1.3$\mu$m InGaAsP/InP uncooled-LD의 제작)

  • 조호성;김정수;이중기;장동훈;박경현;이승원;박기성;김홍만;박형무
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.6
    • /
    • pp.75-81
    • /
    • 1995
  • InGaAsP/InP uncooled LDs emitting at 1.3$\mu$m wavelength are of interest for several application of fiber-to-the-home, optical interconnection, long-haul high-bit-rate optical transmission systems, etc. The strain compensated PBH-MQW-LD employing 1.4% compressive strained well (${\lambda}=1.3{\mu}m$) and 0.7% tensile strained barrier (${\lambda}=1.12{\mu}m$) layers grown by low pressure metallicorganic vapor phase epitaxy was found to be low threshold current and stable temperature characteristics. The average threshold current of 5.6mA and average slope efficiency of 0.27mW/mA at room temperature were obtained for uncoated uncooled-LD.

  • PDF

Eating Qualities of Frozen Cooked Rice on the Thawing Condition (해동조건에 따른 냉동밥의 밥맛 비교)

  • 오명숙
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.2
    • /
    • pp.147-157
    • /
    • 1997
  • It attempted to determine the effect of various thawing methods, such as pressure cooking, conventional cooking, microwave heating and thawing at room temperature, on the quality of frozen cooked rice using Nongan variety of rice. These effects were analysed at three different periods-after 10 days, 30 days and 90 days. It conducted a physico-chemical analysis(moisture content, dehydration rates, color value and texture) and sensory evaluation o the frozen-thawed cooked rice. The study showed that there were no significant differences on the frozen-thawed cooked rice. The study showed that there were no significant differences on the quality characteristics of frozen-thawed cooked rice during the storage of 90 days. However, the thawing method of pressure cooking caused high moisture content and decrease in hardness on the cooked rice, the desirability for the rice didn't diminish compared with the cooked rice just after cooking. the quality characteristics of the cooked rice after frozen-thawing by conventional cooking and microwave heating were similar with that of the cooked rice just after cooking. thawing at room temperature caused a significant decrease in quality characteristics.

  • PDF

THE CHARACTERISTIC OF A TWO STAGE AMMONIA RECIPROCATING COMPRESSOR (왕복동 압축기의 성능에 대하여)

  • CHO Kweoun Ock;OH Hoo Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.65-69
    • /
    • 1977
  • The characteristics of two stage compressor which is constituted of two separated reciprocating compressors was tested measuring the volumetric efficiency of each compressor at suction of both bighandlowpressdresideusillgorificetypeflolrmeters. The volumetric efficiency of low pressure side compressor was lower than that of the high side when they were operating under the same compression ratio. And it tended to reduce obviously by lowering evaporating temperature resulting in a markable reduction of refrigerating capacity at the same time. It is assumed that the falling of volumetric efficiency at low side compressor was directed by the decrease in evaporating temperature which derives the falls of gas pressure at suction, increase in compression ratio, and gas flow resistance at suction and discharge valves.

  • PDF

Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines (디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF

Peel Stength of the Acrylic Copolymer and Pressure Sensitive Adhesives (아크릴계 점착제의 박리강도와 점착부여제)

  • 김현중
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.79-88
    • /
    • 1999
  • The stability and performance (peel strength) of the acrylic copolymer and various modified rosin systems were investigated. The peel strength was measured over a wide range of scaling rates, and the influence of the viscoelasticity of the PSA(pressure sensitive adhesive) was considered. In the case of miscible systems, the peak of peel strength (PSA performance) over wide peel rates was changed and modified systematically with increasing glass transition temperature of the blends. The peak of the peel strength for blended systems shifts toward the lower rate side as glass transition temperature ($T_g$) of the blend increased. The influence of esterification of the rosin on performance and stability against deterioration was greatly modified by blending with rosin of glycerol ester and rosin pentaerythritol ester. The failure mode of the blend varies with the combination with acrylic copolymer and modified rosin, and cohesive failure was found at a lower peel rate while interfacial failure was found at a high peel rate. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were detected.

  • PDF