Abstract
The stability and performance (peel strength) of the acrylic copolymer and various modified rosin systems were investigated. The peel strength was measured over a wide range of scaling rates, and the influence of the viscoelasticity of the PSA(pressure sensitive adhesive) was considered. In the case of miscible systems, the peak of peel strength (PSA performance) over wide peel rates was changed and modified systematically with increasing glass transition temperature of the blends. The peak of the peel strength for blended systems shifts toward the lower rate side as glass transition temperature ($T_g$) of the blend increased. The influence of esterification of the rosin on performance and stability against deterioration was greatly modified by blending with rosin of glycerol ester and rosin pentaerythritol ester. The failure mode of the blend varies with the combination with acrylic copolymer and modified rosin, and cohesive failure was found at a lower peel rate while interfacial failure was found at a high peel rate. A few systems where a single Tg could be measured, despite the fact that two phases were observed microscopically, were detected.