• Title/Summary/Keyword: high temperature high pressure

Search Result 4,161, Processing Time 0.037 seconds

Characterization of InSbTe nanowires grown directly by MOCVD for high density PRAM application

  • Ahn, Jun-Ku;Park, Kyoung-Woo;Jung, Hyun-June;Park, Yeon-Woong;Hur, Sung-Gi;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.23-23
    • /
    • 2009
  • Recently, the nanowire configuration of GST showed nanosecond-level phase switch at very low power dissipation, suggesting that the nanowires could be ideal for data storage devices. In spite of many advantages of IST materials, their feasibility in both thin films and nanowires for electronic memories has not been extensively investigated. The synthesis of the chalcogenide nanowires was mainly preformed via a vapor transport process such as vapor-liquid-solid (VLS) growth at a high temperature. However, in this study, IST nanowires as well as thin films were prepared at a low temperature (${\sim}250^{\circ}C$) by metal organic chemical vapor deposition(MOCVD) method, which is possible for large area deposition. The IST films and/or nanowires were selectively grown by a control of working pressure at a constant growth temperature by MOCVD. In-Sb-Te NWs will be good candidate materials for high density PRAM applications. And MOCVD system is powerful for applying ultra scale integration cell.

  • PDF

Development of 2-inch Plastic Film STN LCD

  • Park, Sung-Kyu;Han, Jeong-In;Kim, Won-Keun;Kwak, Min-Gi
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Due to distinct properties of plastic substrates such as poor thermal resistance, non-rigidness and high thermal expansion, it is difficult to fabricate plastic film LCDs by conventional LCD processes. Poor thermal resistance and high thermal expansion of substrates induced deformation of substrates surface, mismatch of thermal expansion between ITO electrodes and substrates resulted in defects in the ITO electrodes during the high temperature process. Defects of ITO electrodes and non-uniform cell gap caused by non-rigid and flexible properties were also observed in the pressuring process. Based on in these observations, we used a newly developed material and fabrication process to prevent deformation of substrates, defects of electrodes and to maintain uniform cell gap. The maximum temperature of the process is limited up to $110^{\circ}C$ and pressure loaded during the process is five times less than conventional one. With these invented processes and materials, we obtained highly reliable Plastic Film STN LCDs whose electro-optical characteristics are better than or equivalent to those of typical glass LCDs.

  • PDF

Patterning of Pt thin films using SiO$_2$mask in a high density plasma (고밀도 플라즈마에서 규소산화막을 마스크로 이용한 백금박막의 페터닝)

  • 이희섭;이종근;박세근;정양희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.87-92
    • /
    • 1997
  • Inductively coupled Cl$_{2}$ plasma has been studied to etch Pt thin films, which hardly form volatile compound with any reactive gas at normal process temperature. Low etch rate and residue problems are frequently observed. For higher etch rate, high density plasma and higher process temperature is adopted observed. For higher etch rate, high density plasma and higher process temperature is adopted and thus SiO$_{2}$ is used as for patterning mask instead of photoresist. The effect of O$_{2}$ or Ar addition to Cl$_{2}$ was investigated, and the chamber pressure, gas flow rate, surce RF power and bias RF power are also varied to check their effects on etch rate and selectivity. The major etching mechanism is the physical sputtering, but the ion assisted chemical raction is also found to be a big factor. The proposs can be optimized to obtain the etch rate of Pt up to 200nm/min and selectivity to SiO$_{2}$ at 2.0 or more. Patterning of submicron Pt lines are successfully demonstrated.

  • PDF

Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU (고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화)

  • Kim, Seon-Chang;Jeon, Dong-Soon;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

Analysis of Time Series Models for Ozone Concentration at Anyang City of Gyeonggi-Do in Korea (경기도 안양시 오존농도의 시계열모형 연구)

  • Lee, Hoon-Ja
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.604-612
    • /
    • 2008
  • The ozone concentration is one of the important environmental issue for measurement of the atmospheric condition of the country. This study focuses on applying the Autoregressive Error (ARE) model for analyzing the ozone data at middle part of the Gyeonggi-Do, Anyang monitoring site in Korea. In the ARE model, eight meteorological variables and four pollution variables are used as the explanatory variables. The eight meteorological variables are daily maximum temperature, wind speed, amount of cloud, global radiation, relative humidity, rainfall, dew point temperature, and water vapor pressure. The four air pollution variables are sulfur dioxide $(SO_2)$, nitrogen dioxide $(NO_2)$, carbon monoxide (CO), and particulate matter 10 (PM10). The result shows that ARE models both overall and monthly data are suited for describing the oBone concentration. In the ARE model for overall ozone data, ozone concentration can be explained about 71% to by the PM10, global radiation and wind speed. Also the four types of ARE models for high level of ozone data (over 80 ppb) have been analyzed. In the best ARE model for high level of ozone data, ozone can be explained about 96% by the PM10, daliy maximum temperature, and cloud amount.

Evaluation of Degradation Behavior of the Long-Term Serviced Boiler Header (장기 사용 보일러 헤더의 열화거동 평가에 관한 연구)

  • Gwon, Jae-Do;Bae, Yong-Tak;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1673-1680
    • /
    • 2000
  • The degradation of a boiler header constructed by a material, 1Cr-0.5Mo steel in a fossil power plant is observed when the header is exposed for a long period to the high temperature and pressure. The present investigations are for evaluating the effect of the degradation on the material, such as its strength changes. Reheat-treated metal is used to compare the mechanical properties of the degraded and that of reheat-treated materials. Through the investigation, following results are obtained 1) the area ratio of ferrite in the reheat-treated material is larger than that of the degraded material, 2) the hardness and tensile strength of the degraded material are lower than that of the reheat-treated material, 3) the ductile-brittle transition temperature(DBTT) increased toward high temperature region, 4) the fatigue crack growth rate(FCGR) of the degraded material is higher than that of the reheat-treated material in the region of low ΔK value while FCGR of the both materials are similar in high ΔK region.

Analysis of Time Series Models for Ozone Concentrations at the Uijeongbu City in Korea

  • Lee, Hoon-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1153-1164
    • /
    • 2008
  • The ozone data is one of the important environmental data for measurement of the atmospheric condition of the country. In this article, the Autoregressive Error (ARE) model have been considered for analyzing the ozone data at the northern part of the Gyeonggi-Do, Uijeongbu monitoring site in Korea. The result showed that both overall and monthly ARE models are suited for describing the ozone concentration. In the ARE model, seven meteorological variables and four pollution variables are used as the as the explanatory variables for the ozone data set. The seven meteorological variables are daily maximum temperature, wind speed, relative humidity, rainfall, dew point temperature, steam pressure, and amount of cloud. The four air pollution explanatory variables are Sulfur dioxide(SO2), Nitrogen dioxide(NO2), Cobalt(CO), and Promethium 10(PM10). Also, the high level ozone data (over 80ppb) have been analyzed four ARE models, General ARE, HL ARE, PM10 add ARE, Temperature add ARE model. The result shows that the General ARE, HL ARE, and PM10 add ARE models are suited for describing the high level of ozone data.

  • PDF

A Computational Study on DME HCCI Combustions Characteristics with Methanol Concentrations (DME HCCI 운전조건에서 Methanol 분율에 따른 HCCI엔진연소 특성에 관한 수치해석적 연구)

  • Lee, Hyowon;Lim, Ocktaeck;Park, Kyuyeol;Cho, Wonjun;Baek, Youngsoon
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In Dimethyl Ether (DME) indirect production processes, DME have a reforming process to separate Methanol. DME has a high cetane number and Methanol has a high octane number. Each fuel has a different combustion characteristics and reactivity. So, this paper was investigated on the combustion characterisitics of DME and Methanol. Basically, Methanol has a effect of retarding ignition. However, Within 10% of total carbon mole number in DME, Methanol slightly changed the onset timing of Low Temperature Reaction (LTR) with increasing thermal-ignition preparation range. It means that controlling combustion phasing of DME can be possible without eliminated LTR. In case of IMEP, the ranges.

An Analysis Study on Desuperheater valve attachment on Multi Water Spray Nozzles (다중 물 분사 노즐이 장착된 감온밸브의 해석 연구)

  • Lee, Deok-Gu;Cho, Haeng-Hoon;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.74-79
    • /
    • 2009
  • The generation of electric power and plant facilities have been attempting to improve energy efficiency with many efforts as those being basis of our country's economy. In particular, the CHP(Combined Heat Power plant) system, is producing the electricity and process steam, has generally been using for the cogeneration plants. When CHP system operates, the steam has to maintain the high temperature and high pressure in order to have high efficiency of electric power production as much as possible. In addition, the exhausted steam from the turbine has to reform proper temperature to use the needed process. The major purpose of desuperheater is that the superheated steam changes into the saturated steam because it is more efficient and suitable for using the process, furthermore, it is more convenient and stable regarding the process temperature control. The design of the desuperheater obtained through the experiment and preceding analysis. This paper is verified by analysis that water spray nozzle(${\Phi}$=28mm) shows the best ability under the real power plant condition.

  • PDF

Formation of a V-Added Ti Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전합성과 확산 열처리를 이용한 V 이 첨가된 TiAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.696-700
    • /
    • 2002
  • The Ti-aluminide intermetallic compound was formed from high purity elemental Ti and Al foils by self-propagating, high-temperature synthesis(SHS) in hot press. formation of $TiAl_3$ at the interface between Ti and Al foils was controlled by temperature, pressure, heating rate, and so on. According to the thermal analysis, it is known in this study that the heating rate is the most important factor to form the intermetallic compound by this SHS reaction. The V layer addition between Al and Ti foils increased SHS reaction temperatures. The fully dense, well-boned inter-metallic composite($TiA1/Ti_3$Al) sheets of 700 m thickness were formed by heat treatment at $1000^{\circ}C$ for 10 hours after the SHS reaction of alternatively layered 10 Ti and 9 Al foils with the V coating layer. The phases and microstructures of intermetallic composite sheets were confirmed by EPMA and XRD.