• Title/Summary/Keyword: high temperature cooking

Search Result 191, Processing Time 0.022 seconds

Large Scale of Ethanol Fermentation from Sweet Potato Cooked at Low and High Temperature (고구마의 저온증자 및 고온증자에 의한 공업적 규모의 주정발효)

  • 유병호;김운식;김성두;최명호;남기두;하미숙
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.233-237
    • /
    • 1986
  • Possibility of large scale ethanol fermentation from sweet potato were compared with low temperature and high temperature rooking. Productivity of sweet potato mash cooked at 9$0^{\circ}C$ for 120 minutes was higher than that mash cooked at 124$^{\circ}C$ for 60 minutes and also fermentation yield ai low temperature cooking was better than high temperature cooking. Low temperature cooking was successfully carried out on a large scale. In conclusion, low temperature cooking on large scale should be reduce energy consumption by approximate 30% compared with high temperature cooking.

  • PDF

Large Scale Alcohol Fermentation with Cassava Slices at tow Temperature (Cassava 전분의 저온 증자에 의한 공업적 규모의 알코올 발효)

  • Ryu, Beung-Ho;Nam, Ki-Du
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.2
    • /
    • pp.75-79
    • /
    • 1987
  • The conventional alcohol fermentation method requires a large amount of energy for cooking the starchy raw materials prior to saccharification. The aim of this study was to compare the possibility of large scale alcohol fermentation from cassava slices were compared in low and high temperature cooking systems. The same amount of saccharifying and liquefying enzymes were used for cooking at low and high temperature. At low temperature cooking, conversion of glucose consumed in fermented mash to alcohol was 0.468g alcohol per g glucose of which was higher yield than that obtained at high temperature.

  • PDF

Eating Quality Traits of Hanwoo longissimus dorsi Muscle as a Function of End-Point Cooking Temperature

  • Yang, Jieun;Jeong, Dawoon;Na, Chong-Sam;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.36 no.3
    • /
    • pp.291-299
    • /
    • 2016
  • Interaction between carcass quality grade and end-point cooking temperature on eating quality of Hanwoo m. longissimus was investigated. Ten (10) of steers were sampled from a commercial population; carcasses with QG 1++ (n=5) and QG 1 (n=5) were chosen. Samples were cooked by electric oven at 60 or 82℃ and compared with uncooked control samples. The pH was not affected by cooking temperature but decreased the redness after cooking and steaks cooked at 60℃ were more reddish than steaks cooked at 82℃ in both QG groups. Higher cooking temperature greatly (p<0.05) increased the cooking loss, but there was no significant interaction between cooking temperature and QG on the cooking loss. Moisture is negatively correlated with temperature in both QG while the proportionate relationship between crude fat and end-point temperature found in QG 1++. WBSF values were significantly (p<0.05) high for QG 1, while that was significantly (p<0.05) increased when the temperature continues to increase. The increasing quality grade of beef resulted in significant higher (p<0.01) level of TBARS and cooking temperature increased TBARS content. Fatty acid composition was not altered by cooking at both temperatures and also the amount of fat intake was not changed. The current study indicates that eating quality of beef m. longissimus was greatly influenced by end-point temperature being interacted with QG. However, the amount and composition of fat were stable regardless of end-point temperatures. These results will provide a consumer reference to determine cooking conditions and intramuscular fat content.

Temperature Characteristics on Cooking Equipment Materials of Portable Gas Ranges (이동식부탄연소기의 조리기구재질에 따른 온도 특성)

  • Kim, Dae-Hyun;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.8-13
    • /
    • 2014
  • Accidents involving portable ranges occurred total 133 cases for the last five years(2008~2012). It accounted for 18.0% of all gas accidents(739 cases). Major causes of accidents are using of excessive hot grill, leaving a butane can near fire and overheating of a butane can during cooking. In this study, it is a desire to investigate the relationship between thermal behavior mechanism depending on characteristics of cooking equipment materials of portable gas ranges. It shows that slope of temperature change curve correlates with difference of heat capacity on thermal behavior characteristics experiment depending on materials of cooking equipment. In conclusion, temperature characteristics appear differently depending on variables such as materials of cooking equipment. Especially, it is necessary to restrict using cooking equipment made of stones, because it is very dangerous that temperature of can is rapidly increasing caused by high heat capacity of stone.

Changes of Internal Temperature during the Cooking Process of Dumpling (Mandu) (조리과정 중 중심부 온도의 변화 - 만두를 중심으로)

  • Kim, Jong-Gyu;Kim, Joong-Soon
    • Korean Journal of Human Ecology
    • /
    • v.22 no.3
    • /
    • pp.485-492
    • /
    • 2013
  • The temperature changes of dumpling(mandu) during cooking process were examined and the effects of time-temperature and/or time-size interactions on internal temperature were studied. Mandu was purchased from local markets and classified by its weight(small, medium, and large). Boiling, steaming, pan frying, and deep fat frying were adopted. Internal temperature was measured with a food thermometer in every one minute. The internal temperature of mandu increased over time in every cooking process(p<0.05). After three minutes the internal temperature of mandu in boiling, pan frying, and deep fat frying reached over at $74^{\circ}C$, which is high enough temperature to kill the harmful bacteria, but not in steaming. The internal temperature of mandu was significantly affected by cooking time, size, and both in boiling, steaming, and deep fat frying(p<0.05). There were significant differences between the internal and surface temperatures of mandu in the cooking processes except pan frying in three minutes(p<0.05). The results of this study indicate three minutes' cooking of the mandu by boiling, pan frying, and deep fat frying is safe enough to eat. However, longer steaming time is needed in order to reach safe temperature. This study also indicates the cooking time and size of mandu appear to be major factors in determining the internal temperature achieved at $74^{\circ}C$. More research is needed to check time to reach a safe temperature in the cooking process of mandu by steaming.

Effect of Thawing Methods and Storage Periods on the Quality of Frozen Cooked Rice

  • Oh, Myung-Suk
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.234-240
    • /
    • 1998
  • This study attempted to determine the effect of various thawing methods and storage periods on the quality of froen cooked rice. Frozen cooked rice was thawed at four different methods, such as pressure cooking, conventional cooking, microwave heating and thawing at room temperature after 10 days, 30days and 90 days frozen storage. We conducted a physico-chemical analysis (moisture content, dehydration rates, degree of gelatinization, color value and texture) and sensory evalution on the frozen-thawed cooked rice. The study showed that there were no significant differences on the quality characteristics of frozen-thawed cooked rice during the storage period of 90 days. However, the thawing method of pressure cooking caused high moisture content, rapid dehydration rates, and a high degree of gelatinization on the cooked rice. Thus, the desirabililty for the rice diminished becaused of the excess moisture content and the change of appearance and testure in the rice due to the high temperature. There were similiar quality characteristics to the cooked rice after forzen-thawing whether by conventional cooking or by microwave heating and just after cooking. Thawing at room temperature also caused a significant decrease in quality characteristics.

  • PDF

쌀보리를 기질로 한 알콜발효의 최적 액화효소

  • Nam, Ki-Du;Kim, Woon-Sik;Choi, Myung-Ho;Park, Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.217-221
    • /
    • 1996
  • Various treatments of naked barley with commercial liquefying enzymes have been emploved to reduce high viscosity of naked barley in cooking as a raw material for alcohol production and to increase alcohol yield. The enzyme BAN used for cooking and liquefaction of naked barley was able to make a reduction of one third of viscosity and to enhance alcohol yield of 4 l/Ton of raw material than the T120L was. Of course, alcohol yield depended in part on the applied saccharifying enzymes. The low temperature cooking of naked barley with BAN was favorable compared with high temperature cooking for both of reducing viscosity (210 vs. 237 cp) and final alcohol yield (Yp/so: 0.397 vs. 0.395 g/g) in industrial scale.

  • PDF

High Temperature Cooking of Fish Protein Extracts for Plastein Reaction

  • Lee, Keun-Tai;Park, Seong-Min;Lee, Sang-Ho;Ryu, Hong-Soo;Yoon, Ho-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.321-327
    • /
    • 1997
  • High Temperature-cooking conditions of cultured fishes(loach, crucian carp, bastard halibut, and jacopever) were optimized by response surface methodology(RSM), and plastein products were prepared using enzymatic hydrolysis. Four models were proposed with regard to effects of time(t), temperature(T), and water/fish meat (w/f) ratio on the amount of 0.3M TCA soluble fractions. The model coefficients were ranged from p<0.0001 for jacopever to p<0.0433 for bastared halibut. Cooking conditions for 60% hydrolysis were optimized at 1) 14$0^{\circ}C$ except for crucian carp(136$^{\circ}C$); 2) 10.08 hours(loach), 7.25 hours(crucian carp), 9.85 hours(ba-stard harlibut), and 9.37 hours(iacopever); 3) 1:1(w/f) ratio except for the crucian carp(1.1:1). When protein hydrolyzates were employed for the plastein synthesis, optimum plastein-reaction conditions were determined to be pH 9.0 with chymotrypsin for the loach and crucian carp hydrolyzates, pH 9.0 with papain for the bastard halibut hydrolyzate, and pH 11.0 with trypsin for the jacopever hydrolyzate. Plastein reaction could be performed in water at concentration up to 20%(w/f).

  • PDF

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

High Temperature-Cooking Effects on Protein Quality of Fish Extracts

  • Ryu, Hong-Soo;Moon, Jeong-Hae;Hwang, Eun-Young;Yoon, Ho-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.3
    • /
    • pp.241-247
    • /
    • 1998
  • Fish extracts were processed at high temperature (136.7 ~14$0^{\circ}C$) for possible use as functional food ingredients. Raw fish meats and those hydrothermal extracts were compared with respect to in vitro and in vivo protein qualities. 95% of fat inraw meats was reduced in extracts but there were not remarkable changes in other macronutrients in freeze-dried extracts. Most of essential amino acids were decreased significantly but two times more proline and glycine were detected in extracts. High temperature cooking resulted 2.1 ~3.7 times of higher total free amino acid content infish extracts compared iwth raw meat, and taurine and glutamic acid were increased especially. Severe protein damages were occurred when invitro protein quality indices such as availblae lysine, hydrophilic browing, trypsin inhibitor formation and in vitro protein digestibility were measured on fish extracts. In vivo protein qualities were also strongly influenced by high temperature ; however rat-body-weight gain was nearly zero during PER assay, and rat PER or NPR of fish extracts were significantly lower (p<0.001) than those of cotnrol (ANRC casein) and original raw fish meats.

  • PDF