• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.034 seconds

Reviews on Very High Cycle Fatigue Behaviors of Structural Metals (구조용 금속의 초고주기피로 거동에 대한 연구 동향)

  • Han, Seung-Wook;Park, Jung-Hoon;Myeong, No-Jun;Choi, Nak-Sam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.134-140
    • /
    • 2014
  • The paper presents an overview of the present state of study on the fatigue behaviors at very high number of cycles ($N_f$ > $10^7$). A classification of materials with typical S-N curves and influencing factors such as notches, residual stresses, temperatures, corrosion environments and stress ratios are given. The microstructural inhomogeneities of materials and micro-cracks played an important roles in very high cycle fatigue behaviors. The failure mechanisms for the fatigue design of materials and components are mentioned.

Effect of Ni Addition on Bainite Transformation and Properties in a 2000 MPa Grade Ultrahigh Strength Bainitic Steel

  • Tian, Junyu;Xu, Guang;Jiang, Zhengyi;Hu, Haijiang;Zhou, Mingxing
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1202-1212
    • /
    • 2018
  • The effects of Nickle (Ni) addition on bainitic transformation and property of ultrahigh strength bainitic steels are investigated by three austempering processes. The results indicate that Ni addition hinders the isothermal bainite transformation kinetics, and decreases the volume fraction of bainite due to the decrease of chemical driving force for nucleation and growth of bainite transformation. Moreover, the product of tensile strength and total elongation (PSE) of high carbon bainitic steels decreases with Ni addition at higher austempering temperatures (220 and $250^{\circ}C$), while it shows no significant difference at lower austempering temperature ($200^{\circ}C$). For the same steel (Ni-free or Ni-added steel), the amounts of bainite and RA firstly increase and then decrease with the increase of the austempering temperature, resulting in the highest PSE in the sample austempered at temperature of $220^{\circ}C$. In addition, the effects of austempering time on bainite amount and property of high carbon bainitic steels are also analyzed. It indicates that in a given transformation time range of 30 h, more volume of bainite and better mechanical property in high carbon bainitic steels can be obtained by increasing the isothermal transformation time.

The impact of different shapes of aggregate and crumb rubber on the deformation properties of asphalt concrete

  • Felix N. Okonta;Koketso Tshukutsoane;Babak Karimi
    • Geomechanics and Engineering
    • /
    • v.36 no.1
    • /
    • pp.39-50
    • /
    • 2024
  • Bitumen and high-quality subangular aggregates, the two principal materials used for asphalt concrete construction, are finite and expensive materials. The general availability of crumb rubber and naturally occurring aggregates of different shapes, especially flat and elongated shapes, indicates that they are feasible alternative materials for expanding the volume of bitumen and utilizing a wider range of aggregate shapes for the development of asphalt concrete, with an associated environmental benefit. The study investigated the effect of adding up to 15% crumb rubber and aggregates sorted into different groups, i.e., rounded, elongated, flat, and their combinations, on the rheological and mechanical properties and durability of 50/70 of hot-mix asphalt pavement. The addition of crumb rubber decreased ductility and penetration but increased the softening point. For a 5.5% bitumen content, asphalt concrete briquettes consisting of 7% crumb rubber and three types of aggregate shapes, i.e., 100% rounded, a mix of 75% rounded and 25% elongated, and a mix of 75% rounded, 15% elongated and 10% flat, were associated with high Marshall stability and indirect tensile strength as well as low lateral deformation due to their high solidity and moderate angularity ratio. Also, the addition of 7% crumb rubber resulted in a significant improvement in the tensile strength ratio and rebound strain of briquettes consisting of 75% rounded and 25% elongated aggregates and those with 75% rounded, 15% elongated and 10% flat aggregates. In relation to the parameters investigated, the three groups of briquettes met some of the local (South Africa) requirements for the surface course and base course of low traffic volume roads.

Strength properties of concrete with fly ash and silica fume as cement replacing materials for pavement construction

  • Chore, Hemant Sharad;Joshi, Mrunal Prashant
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.419-427
    • /
    • 2021
  • The overuse level of cement for civil industry has several undesirable social and ecological consequences. Substitution of cement with industrial wastes, called by-products, such as fly ash, ground granulated blast furnace slag, silica fume, metakaoline, rice husk ash, etc. as the mineral admixtures offers various advantages such as technical, economical and environmental which are very important in the era of sustainability in construction industry. The paper presents the experimental investigations for assessing the mechanical properties of the concrete made using the Pozzolanic waste materials (supplementary cementitious materials) such as fly ash and silica fume as the cement replacing materials. These materials were used in eight trial mixes with varying amount of ordinary Portland cement. These SCMs were kept in equal proportions in all the eight trial mixes. The chemical admixture (High Range Water Reducing Admixture) was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days curing were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days curing were evaluated. The study corroborates that the Pozzolanic materials used in the present investigation as partial replacement for cement can render the sustainable concrete which can be used in the rigid pavement construction.

Structural Strength of Beam-to-CFT Connections with Vertical Diaphragm (수직다이아프램을 사용한 충전형 각형강관기둥 접합부의 내력평가)

  • Kim, Kyungtae;Lee, Heon-Woo;Kim, Young-Ki;Kim, Taejin;Kim, Jong-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2017
  • This paper investigates structural characteristics of internal vertical diaphragm and its influence on the connection strength between concrete filled tubular(CFT) column and beam. CFT columns are hybrids that combine two materials in one member. They have the benefits of steel for high tensile strength and ductility and of concrete for high compressive strength and stiffness. Analytical method of the flexural strength of vertical diaphragm to account moment transfer between panel zones is presented using yield line theory. Connection design is verified by a set of monotonic tests and numerical analysis with different diaphragm thicknesses. Plastic zones of CFT flange was found and matched closely to FEM results. Both analytical and experimental results showed good agreement that vertical diaphragm effectively alleviates the stress and transfer the force.

Charactetistics of Cement-Fly Ash Paste Containing High Early Strength Admixtures (조강제를 함유한 플라이애쉬 시멘트 페이스트의 특징)

  • 이진용;조현수;이선우;이광명
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.51-56
    • /
    • 2000
  • Fly ash used as a cement replacement material increases the long term strength and also improves the durability of concrete and mortar. However, the use of fly ash is a little in spite of great benefit. In order to increase the consumption of fly ash, it has to be used as a cement replacement materials in the production of mortar and concrete, and the reduction of early strength development due to the use of fly ash also has to be diminished. In this study, many chemical compounds which accelerate the early strength was investigated. The $Na_2$$SO_4$, $K_2$$SO_4$, Triethanolamine were selected and applied to the production of mortar. It was found that they enhance the early strength development of mortar(1, 3day) and decrease the amount of $Ca(OH)_2$, and also increase the production of ettringite. According to the results of mercury instruction test, the pores ranged from 0.01 $\mu\textrm{m}$ to 5$\mu\textrm{m}$ were decreased and it was also found in the analysis of X ray and SEM that fly ash increases the amount of ettringite at early ages.

Investigation of Shape Accuracy in the Forming of a Thin-walled S-rail with Classification of Springback Modes (스프링백 모드분류를 통한 박판 S-rail 성형공정의 형상정밀도 고찰)

  • Jung, D.G.;Kim, S.H.;Kim, M.S.;Lee, T.G.;Kim, H.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.477-485
    • /
    • 2013
  • This paper aims to evaluate quantitatively the springback characteristics that evolve in the sheet metal forming of an S-rail in order to understand the reasons of shape inaccuracy and to find a remedy. The geometrical springback is classified into six modes: angle change of punch and die shoulders, wall curl, ridge curl, section twist, and axial twist. The measuring method for each springback mode is suggested and quantitative measurements were made to determine the tendency towards shape accuracy. Forming experiments were conducted with four types of steel sheets that have different tensile strengths, which were 340MPa, 440MPa, 590MPa and 780MPa, in order to evaluate the effect of the tensile strength and the bead shape on the springback behavior. Springback tendencies show that they are greatly affected by the tensile strength of the sheet and the shape of the tools. Almost all springback modes except the section twist and the axial twist show a linearly increasing trend as the tensile strength of the sheet increases. The results can be used as basic data for design and for compensation of the press die geometry when forming high strength steels which exhibit large amounts of springback.

A Research on Evaluation Methods of Testing Impact of the Strength of Soldering (납착강도 충격시험 평가법에 관한 연구)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • So far, I Conducted an examination with focus on the type, characteristic, and test methods of impact test. which is a type of mechanical that evaluate materials. As mentioned previously, in testing soldering strength of soldering is the load when the object under experiment is broken down with the result of flexibility test or peel test. In this method, a hevay load is necessary until alloy of parent metal is bended, if the alloy of the parent metal has a large mechanical quality(peel strength or resisting power). Once the alloy of the parent metal is bended, however, it tends to come into pieces abruply form the part where soldered. Therefore, a metal has a high breakdown value if the degree of strength of its parent metal is high even if the result of measurement indicates otherwise. Thus, the result of the test did not correspond to the clinical result. Therefore, this study concludes as the following from a test of strength of soldering by mean of conducting an impact test, which is a type of mechanical evaluation methods : 1. Among various impact tests, a charpy thpe is more appropriate than the izod type in testing strength of soldering. 2. As far as test piece is concerned, to use subsized impact test piece is appropriate in the impact test in that it does not have notch. 3. In the matter of analysis, it is appropriate to measure absorbing energy which results from rupture of test piece.

  • PDF

Analysis of Thermal Shock and Thermal Fatigue in Tool Steels for Hot Forging (열간단조 금형강의 열충격과 열피로 특성연구)

  • 김정운;문영훈;류재화;박형호
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2002
  • The thermal shock and thermal fatigue test has been carried out to analyze the thermal characteristics of tool steels for hot forging and the effects of mechanical properties on this study have been investigated. The resistance to thermal shock is first of all a matter of good toughness and ductility. Therefore, a proper hot-work tool steel should be characterized by high fracture strength and high temperature toughness. Based on these results, some critical temperature($T_{fracture}$) at which fracture occur can be measured to characterize the thermal resistance of the materials. During thermal fatigue tests, the thermal fatigue cracks occur because of the repetitive heating and cooling of the die surface and the thermal fatigue damage was evaluated by analyzing different number of cycles to failure. The results showed that the resistance to thermal shock and thermal fatigue were found to be favoured by high hot tensile strength and high hot hardness, and thermal resistance of SKD61 was superior to that of ESC, SKT4 and this was caused by higher mechanical properties of SKD61.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.