• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.028 seconds

The Study for Cell Morphology with Gas Cocktail in Microcellular Foaming Process (초미세 발포 공법 시 가스 혼합에 따른 셀 형상 연구)

  • Cha Sung Woon;Yoon Jae Dong;Lee Yoon Sung;Kim Hak Bin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.168-174
    • /
    • 2005
  • Nowadays, the companies use polymer materials for many purposes fur they have many advantages. The costs of these materials take up too high a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2,\;N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. In previous research, many facts of microcellular foaming process are founded its characteristics. But previous researcher found the characteristics of microcellular foaming process with pure gas, for example $CO_2,\;N_2$ and so on, they did not found the characteristics of microcellular foaming process with one more gases. If one more gases inlet the resin, the characteristics of microcellular foaming process is changed very amazingly. In this paper, discuss on the characteristics of microcellular foaming process wi th gas cocktail about cell morphology.

A Study on the Sound Insulation Characteristics of Honeycomb Panels for Offshore Plants (해양플랜트용 허니컴 패널의 차음 특성 연구)

  • Jung, Jae-Deok;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.948-955
    • /
    • 2017
  • Currently, porous materials (e.g., mineral wool) are the core materials used in offshore plant panels, but in spite of their superb acoustic performance, these items must be replaced for environmental reasons. A honeycomb structure is widely used throughout the industry because of its high strength-to-weight ratio. However, research in terms of noise and vibration is minimal. An acoustic study should be conducted by taking advantage of honeycomb structures to replace porous materials. In this study, a simulation was performed assuming that a honeycomb panel is a superposition of symmetric mode and antisymmetric mode. Reliability was verified by comparing a simulation results based on a theory with a experimental results, and the possibility of the panel as a core material was evaluated by studying the sound insulation characteristics of a honeycomb. As the panel thickness increased, the coincidence frequency shifted to low frequency. As the angle between horizontal line and oblique wall and cell-size decreases, the sound insulation performance is improved. And as the cell-wall thickness increased, the sound insulation performance improved.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

Analysis of Non-compliance of Food Utensils, Containers, and Packages in Foreign Countries During 2011-2019 (2011-2019년 식품용 기구 및 용기·포장의 제외국 부적합 정보 분석)

  • Cho, Seung Yong;Lee, Ye Yeon;Cho, Sanggoo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.3
    • /
    • pp.141-147
    • /
    • 2021
  • The foreign trends of noncompliance occurring frequently in food contact materials during the period of 2011-2019 was investigated by analyzing the food safety risk information DB in the National Food Safety Information Service (NFSI). A total of 2,042 cases of noncompliance of food utensils, containers, and packages were classified into 5 violation categories; administrative procedures, manufacturing and processing standards, residues and migration standards, labeling and advertising, and quality standards. This was again subcategorized according to non-compliance causative factors. The non-compliances in residues and migration standards comprised the largest proportion (76.4%) of the violative categories. The number of noncompliance information collected in 2011 was 88 cases and increased to 373 cases in 2019. A 72.8% of the non-compliance case was identified to be products of 4 countries (China 64.2%, Germany 4.0%, Japan 3.2%, and Taiwan 3.1%), those produce large quantities of containers and packaging products. During the period of 2011-2019, the number of illegal use of hazardous materials and illegal recycling of waste synthetic resins has decreased to less than one a year since 2014. On the other hand, after 2016, inconsistency of heat-resisting temperature labeling (Taiwan), non-compliance in paper container's strength standards, violation of printing standards, and the risk of consumer injury while using the products were newly reported due to the strengthening of consumer safety protection regulations. Migration of hazardous substances in synthetic polymer products such as heavy metals, melamine and formaldehyde in melamine tableware, primary aromatic amines which are colorant components in kitchenware such as ladles and spatulas, and phthalate plasticizers have been continuously reported with high frequency.

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication (MEMS 공정에서의 자기 조립 단분자층 기술 응용)

  • Woo-Jin Lee;Seung-Min Lee;Seung-Kyun Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.

Mechanical Properties of 3D Printed Composite Material on Various Thermal Environment (다양한 온도 환경에 따른 3D 프린트 복합재료의 기계적 물성 평가)

  • Sang-Hun Kang;Do-Hyeon Kim;Hyoung-Seock Seo
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.193-198
    • /
    • 2023
  • Currently, there are many discussions about composite materials and 3D printed composite material to weight reduction of ships. A test was conducted to confirm the applicability of the 3D printed composite material to ships and offshore structures by linking the 3D printing technology with excellent productivity and the composite material with corrosion resistance and lightweight characteristics in salt water environments. In order to apply the 3D printed composite material used in this paper to ships and offshore structures, the temperature environmental effects that can be exposed in the marine environment should be considered. Therefore, the tensile test was conducted with specimen of Carbon + Onyx, Carbon + Nylon, HSHT glass + Onyx, HSHT glass + Nylon material in low temperature (-50℃), room temperature (20℃), and high temperature (50℃) environments that can be exposed to the marine environment. As a result of the tensile test, the carbon + onyx specimen showed the highest tensile strength and the HSHT glass + onyx specimen showed the highest tensile strain. In addition, by analyzing the tested specimens, the failure mode of the 3D printed composite material specimens exposed to various temperature environments was analyzed.

Fabrication of Activated Carbon Fibers from Polyacrylonitrile-Derived Carbon Fibers: Investigating CO2 Adsorption Capability in Relation to Surface Area

  • Seung Geon Kim;Sujin Lee;Inchan Yang;Doo-Won Kim;Dalsu Choi
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.402-407
    • /
    • 2023
  • Activated carbon fibers (ACFs) are fibrous form of activated carbon (AC) with higher mechanical strength and flexibility, which make them suitable for building modules for applications including directional gas flow such as air and gas purification. Similarly, ACFs are anticipated to excel in the efficient capture of CO2. However, due to the difficulties in fabricating monofilament carbon fibers at a laboratory scale, most of the studies regarding ACFs for CO2 capture have relied on electrospun carbon fibers. In this study, we fabricated monofilament carbon fibers from PAN-based monofilament precursors by stabilization and carbonization. Then, ACFs were successfully prepared by chemical activation using KOH. Different weight ratios ranging from 1:1 to 1:4 were employed in the fabrication of ACFs, and the samples were designated as ACF-1 to ACF-4, respectively. As a function of KOH ratio, increase in surface area could be observed. However, the CO2 adsorption trend did not follow the surface area trend, and the ACF-3 with second largest surface area exhibited the highest CO2 adsorption capacity. To understand the phenomena, nitrogen content and ultramicropore distribution, which are important factors determining CO2 adsorption capacity, were considered. As a result, while nitrogen content could not explain the phenomena, ultramicropore distribution could provide a reasoning that the excessive etching led ACF-4 to develop micropore structure with a broader distribution, resulting in high surface area yet deteriorated CO2 adsorption.

Clinical considerations for complete denture relining (의치상 첨상재의 종류와 임상적 고려사항)

  • Young-Eun Cho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.39-45
    • /
    • 2024
  • The residual alveolar ridge below the denture base undergoes physiologic changes over time, which results in the existing dentures becoming less accurate with the residual alveolar ridge. In addition, changes of the occlusal plane, decreasing in vertical dimension and loss of denture retention and facial support can occur. Consequently, denture relining may be required to accommodate these changes and ensure an ongoing close fit. Relining a denture can be performed directly on the chairside using autopolymerizing relining materials or indirectly in the laboratory using heat-cured relining materials. A direct relining method is not only simple but also time and cost effective. However, irritation or burning sensation of the mucosa can occur, and poor bonding of the relining material to the denture base can be cited as disadvantages. The indirect relining method exhibits relatively high bonding strength between the relining material and the denture base, but the patient might experience discomfort during relining process period. This report will examine the characteristics of relining materials, including those used in the relining of CAD-CAM dentures, and explore the clinical considerations for relining procedures.

A Study on Low-noise Propeller Shape Design using Composite Material Molding Method (복합소재 성형공법을 이용한 저소음 프로펠러 형상 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Recently, the paradigm of the aircraft industry, not only domestically but also globally, has been changing significantly starting with the era of the Fourth Industrial Revolution. With the convergence of new technologies such as ICT and AI, the drone market, centered around the military, is expanding its overall services to include the civilian market. Additionally, drones operate by being equipped with batteries, and for product lines that use batteries, lightening the product is one of the critical factors. This is because the lighter the aircraft, the less battery consumption and maximum efficiency. Therefore, recently, composite materials have been used to reduce the weight of the aircraft. To not only reduce weight but also achieve high functionality, it is being applied to most areas such as propellers, airframes, interior materials, floor plates, driving devices, and battery housings, and is emerging as a core technology. In this paper will utilize ceramic fiber composite materials, which have recently emerged for lightweight. It aims to improve noise and strength by targeting propellers, one of the most important factors in drones. In addition, the performance of the propeller developed through the low-noise design will be verified.

Effects of Heat-treatments on Discharge Characteristics of TiFe1-xNix Alloy Electrodes for Ni/MH Secondary Battery (Ni/MH 2차전지용 TiFe1-xNix 합금전극의 방전특성에 대한 열처리의 영향)

  • Joung, Soon-dol;Joung, Sang-sik;Ahn, Hyo-jun;Kim, Ki-won
    • Journal of Hydrogen and New Energy
    • /
    • v.9 no.4
    • /
    • pp.135-141
    • /
    • 1998
  • The effects of heat-treatment on discharge characteristics of $TiFe_{1-x}Ni_x$ alloy were investigated. The content of Ni in alloy was varied from x = 0.1 to 0.6 by each 0.1 increment. Discharge capacity change of each alloy with C/D cycles was measured. With increasing Ni-content initial discharge capacity was increased. but at x = 0.6 it was deceased again. With increasing C/D cycles discharge capacity was rapidly decreased in the alloy of high Ni-content. In order to investigate the effects of heat-treatment on cycle life, $TiFe_{0.5}Ni_{0.5}$ alloy having maximum initial discharge capacity was heat-treated at various temperatures in the range of $700{\sim}900^{\circ}C$ and tested. The loss of initial discharge capacity was appeared at all temperatures. but cycle characteristics of the alloy was improved. The electrodes heat-treated for 1 hour in the range of $700{\sim}850^{\circ}C$ showed good recovery of discharge capacities through repeated cycles, and from SEM observation results these were considered as 1 hour in the range of $700{\sim}850^{\circ}C$ showed good recovery of discharge capacities through repeated cycles, and from SEM observation results these were considered asbeing due to increased electrode strength and small loss of porosity during heat-treatment. The electrode heat-treated for 1 hour at $900^{\circ}C$ showed poor discharge characteristics because of low porosity.

  • PDF