• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.032 seconds

Use of an Electric Muscle Stimulation Thigh Band and High-intensity Circuit Training to Activate the Thigh Muscle (무릎 밴드를 이용한 EMS와 High-intensity Circuit Training의 대퇴근육 활성화 효과)

  • Hanna Park;Jinhee Park;Jooyong Kim
    • Journal of Fashion Business
    • /
    • v.27 no.2
    • /
    • pp.39-51
    • /
    • 2023
  • The purpose of this study was to effectively improve the thigh muscles of adult women working from home due to COVID-19. In this study, ten adult women working from home performed 1) an electromyography test, 2) a static balance test on a balance board, and a 3) dynamic balance test by squatting on a Bosu ball four times: before electric muscle stimulation (EMS), after EMS, after high-intensity circuit training (HICT), and after EMS plus HICT. For this test, EMS was attached to a medical knee support to manufacture an EMS knee band that could be easily worn regardless of the location. For the experiment, EMS(electric muscle stimulation) was attached to the medical knee protector to manufacture an EMS knee band that can be easily worn regardless of location, and was measured based on the right foot. The study results confirmed that in all tests (electromyography test, static balance test on the balance board, and dynamic balance test by squatting on a Bosu ball), thigh strength improved in the order of treatment before EMS, after EMS, after HICT, and after EMS plus HICT. The study showed that people working from home or with activity restrictions due to COVID-19 had better exercise effects when wearing the EMS knee band and performing HICT, even in a small space.

Optimum Mix Proportions of In-fill Slurry for High Performance Steel Fiber Reinforced Cementitious Composite (초고성능 강섬유보강 시멘트 복합체의 충전슬러리 최적배합 도출)

  • Kim, Seung-Won;Park, Cheol-Woo;Kim, Seong-Wook;Cho, Hyun-Myung;Jeon, Sang-Pyo;Ju, Min-Kwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • As political circumstances in oversea countries and Korea varies, the risk of vulnerability from unexpected extreme loading conditions, such as explosions or extreme impacts, also increased. In addition, construction companies in Korea recently have taken chances of overseas expansion to countries where their domestic situations are not in rest. Therefore, the resistance of construction materials for blast or impact loading become taking more consideration from engineering field. This study is a part of the research to develop a high performance fiber reinforced cementitious composite materials with high volume steel fibers and primary purpose of this study is to find an optimum mix proportions of in-fill slurry. In order to accomplish the tasks this study performed experimental investigations on the slurry for consistency, compressive strength, flowability, J-penetration, bleeding and rheology properties as well as mechanical properties, compressive and flexural strength, with respect to different mix proportions.

Fracture Characteristics of C/SiC Composites for Rocket Nozzle at Elevated Temperature (로켓 노즐목 소재 C/SiC 복합재 고온 파괴 특성)

  • Yoon, Dong Hyun;Lee, Jeong Won;Kim, Jae Hoon;Sihn, Ihn Cheol;Lim, Byung Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2016
  • In a solid propulsion system, the rocket nozzle is exposed to high temperature combustion gas. Hence, choosing an appropriate material that could demonstrate adequate performance at high temperature is important. As advanced materials, carbon/silicon carbide composites (C/SiC) have been studied with the aim of using them for the rocket nozzle throat. However, when compared with typical structural materials, C/SiC composites are relatively weak in terms of both strength and toughness, owing to their quasi-brittle behavior and oxidation at high temperatures. Therefore, it is important to evaluate the thermal and mechanical properties of this material before using it in this application. This study presents an experimental method to investigate the fracture behavior of C/SiC composite material manufactured using liquid silicon infiltration (LSI) method at elevated temperatures. In particular, the effects of major parameters, such as temperature, loading, oxidation conditions, and fiber direction on strength and fracture characteristics were investigated. Fractography analysis of the fractured specimens was performed using an SEM.

Mechanical Properties of Ta/TaN Multilayer (Ta/TaN 복합 다층 피막의 기계적 특성)

  • Gang, Yeong-Gwon;Lee, Jong-Mu;Choe, Sang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.837-842
    • /
    • 1999
  • The Ta/TaN multilayer structure with repeating layers of a poly-crystalline Ta layer of high ductility and a TaN layer of high hardness is expected to exhibit toughness. This paper reports the results on the hardness and the adhesion strength of Ta/TaN multilayers and compositional gradient Ta/TaN layers deposited on the high speed steel substrate by reactive sputtering as a function of annealing temperature. The TaN film deposited with the $N_2$/Ar ratio of 0.4 in the reactive sputtering process exhibits the highest crystallinity, and the highest hardness and the results of scratch test of the Ta/TaN multilayers. The hardness and adhesion strength of the Ta/TaN multilayers becomes deteriorated with increasing the annealing temperature in the heat treatment right after depositing the layers. Therefore, post-annealing treatments are not desirable in the case of the Ta/TaN multilayers from the standpoint of mechanical properties. Also the hardness of Ta/TaN multilayers increases with decreasing the compositional modulation wavelength, but the adhesion property of the layers is nearly independent of the wavelength. On the other hand, the compositional gradient Ta/TaN film exhibits the highest hardness and the value of scratch test for the post-annealing temperatures of 20$0^{\circ}C$ and 40$0^{\circ}C$, respectively. This tendency of the compositional gradient Ta/TaN films differs from that of the Ta/TaN multilayers.

  • PDF

Fabrication and Characteristics of CFRC(Carbon Firber Reinforced Carbon Composites) Fabricated with Carbon Fiber and Coal Tar Pitch Matrix (석탄계 핏치를 결합재로한 탄소/탄소 복합재의 제조 및 특징)

  • Ju, Hyeok-Jong;Choe, Don-Muk;O, In-Seok
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.194-205
    • /
    • 1994
  • In this research, we attempt to fabricate an excellent CFRC(Carbon Fiber Reinforced Carbon), which has good thermal and mechanical properties, with 8H/satin woven fabric prepreg, high modulus and high strength type continuous carbon fiber and raw coal tar pitch(RCTP) matrix or THF soluble fraction(THFSP) matrix which has good graphitizability. Green bodies were fabricated with hot press molding technique and CFRC samples were made after carbonization, impregnation, recarbonization and graphitization steps. For the purpose of characterization of the physical properties, SEM, polarized light microscope, TGA were observed, and tested flexural strength, modulus and ILSS. After heat treating the THFSP matrix up to $2300^{\circ}C$, the value of $C_0$/2 was 3.380$\AA$, which is analogous to the structure of natural graphite and the value of 2$\theta$ is $26.276^{\circ}$ approached to the Bragg's angle of natural graphite. As a result of TGA to test the high temperature air oxidation, the THFSP matrix, graphitized up to $2300^{\circ}C$, exhibited the best air oxidation resistance. And mechanical properties were increased up to 65~70% as fiber volume fraction increased. Because of the good orientation graphitizability, the fracture surface of THFSP matrix CFRC is very good.

  • PDF

A Study on Improvement of Seismic Performance of High Strength Reinforced Concrete Interior Beam-Column Joints using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 고강도 철근콘크리트 내부 보-기둥 접합부의 내진성능 개선 연구)

  • Ha, Gee-Joo;Hong, Kun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.753-760
    • /
    • 2012
  • In this study, experimental research was carried out to evaluate and improve the constructability and seismic performance of high strength R/C interior beam-column joints regions, with or without the shear reinforcement, using high ductile fiber-reinforced mortar. Six specimens of retrofitted the beam-column joint regions using high ductile fiber-reinforced mortar are constructed and tested for their retrofit performances. Specimens designed by retrofitting the interior beam-column joint regions (IJNS series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the enhancement of crack dispersion by fiber bridging from using new high ductile materials for retrofitting. Specimens of IJNS series, designed by the retrofitting of high ductile fiber-reinforced mortar in beam-column joint regions increased its maximum load carrying capacity by 96~102.8% and its energy dissipation capacity by 0.99~1.11 folds when compared to standard specimen of SIJC with a displacement ductility of 5.

Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys (Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향)

  • Kim, Chul-Hyo;Lee, Jeong-Moo;Kim, Kyung-Hyun;Kim, In-Bae
    • Journal of Korea Foundry Society
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

Microstructure and Mechanical Properties of Hypereutectic Al-Si Alloy Bars Processed via Horizontal Continuous Casting (수평연속주조한 과공정 Al-Si합금 소경봉의 미세조직 및 기계적성질)

  • Kim, Wan-Chul;Park, Ji-Ha;You, Bong-Sun;Park, Won-Wook
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.585-591
    • /
    • 1997
  • Hyper-eutectic Al-17.5wt%Si alloy bars of 25 mm in diameter were produced by horizontal continuous casting process. Effect of both casting speed and primary Si refiner (AlCuP) on microstructure and mechanical properties of the alloy have been investigated. With increasing a weight fraction of AlCuP, the average primary Si size decreased down to $20 {\mu}m$. On the contrary, there was no notable changes of microstructure and primary Si size according to the casting speed in the experimental range of this study, indicating that the cooling rate should be increased to optimize and refine microstructure and primary Si size. The experimental results including hardness, tensile strength and wear resistance tests of the processed alloy bars showed a good possibility to develop the high performance wear resistant Al-Si alloy.

  • PDF

Process Design for Manufacturing 1.5wt%C Ultrahigh Carbon Workroll: Void Closure Behavior and Bonding Strength (1.5wt%C 초고탄소 워크롤 제조를 위한 단조 공정 설계: 기공압착 및 접합강도 분석)

  • Lim, H.C.;Lee, H.;Kim, B.M.;Kang, S.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.269-274
    • /
    • 2013
  • Experiments and numerical simulations of the incremental upsetting test were carried out to investigate void closure behavior and mechanical characteristic of a 1.5wt%C ultra-high carbon steel. The experimental results showed that the voids become quickly smaller as the reduction ratio increases. The simulation results confirmed this behavior and indicated that the voids were completely closed at a reduction ratio of about 40~45% during incremental upsetting. After the completion of the incremental upsetting tests, the process of diffusion bonding was employed to heal the closed voids in the deformed specimens. To check the appropriate temperature for diffusion bonding, deformed specimens were kept at 800, 900, 1000 and $1100^{\circ}C$ for an hour. In order to investigate the effect of holding time for diffusion bonding at $1100^{\circ}C$, specimens were kept at 10, 20, 30, 40, 50 and 60minutes in the furnace. A distinction between closed and healed voids was clearly established using microstructural observations. In addition, subsequent tensile tests demonstrated that complete healing of a closed void was achieved for diffusion bonding temperatures in the range $900{\sim}1100^{\circ}C$ with a holding time larger than 1 hour.

Assessment for Static and Fatigue Strength of the Aluminum Alloy for LNG Ship (LNG 선박용 알루미늄 합금 소재의 정적 및 피로 강도 평가)

  • Yoon, Yong Keun;Kim, Jae Hoon;Kim, Woo Joong;Baik, Kye Ho;Park, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.1-5
    • /
    • 2013
  • Liquefied Natural Gas is liquefied at the condition of atmosphere pressure and cryogenic temperature. LNG is exposed very long time under the cryogenic temperature and high pressure, and it is very important to retain the structural safety in this envelopment. Until now, the material which are composing the storage tank of LNG ship has experimented at room temperature, so it is not enough to apply for the design at the cryogenic temperature. The purposes of this study are investigated mechanical properties for aluminum alloy. To evaluate tensile and fatigue test for aluminum alloy, it was considering static and fatigue conditions at room and cryogenic temperature. S-N curves were designed at both temperature respectively. Also, P-S-N curve was performed statistical method by JSME-S002.