• 제목/요약/키워드: high strength materials

Search Result 3,818, Processing Time 0.039 seconds

The Characteristics of Flexure Strength and Rigidity in Light-weight CFRP Members (경량화 CFRP 부재의 휨 강도와 강성 특성)

  • Yang, In-Young;Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.95-99
    • /
    • 2008
  • Applications of composite materials in various engineering fields have been extended significantly. For being useful composite materials, we could modify the rigidity and strength characteristics of composite material according to structures and material direction. In this study, CFRP, which has been widely used in space leisure and general structural applications due to the weight, elasticity coefficient, high fatigue strength and lower thermal transformation ect, was selected. As the CFRP is an anisotropic material whose mechanical properties change with its stacking sequence or angle, special attention was given to the effects of the fiber orientation angle on the bending characteristics of CFRP fiat and CFEP square members. It's different on the each result of strength and rigidity of CFRP flat and CFRP square members.

Interfacial Characteristics of Al/Cu Hybrid Materials Prepared by Compound Casting (복합주조공정으로 제조한 Al/Cu 하이브리드 소재의 계면특성)

  • Kim, Nam-Hoon;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.141-146
    • /
    • 2015
  • Aluminum-based hybrid parts were fabricated through a compound casting process with Al or Cu inserts which can be used for applications requiring high conductivity. Because the interface stability between the insert and the aluminum matrix is important, the effects of process variables on the interfacial adhesion strength were investigated. Additions of Cu and Mg to Al melt were found to enhance the adhesion strength, though the melt fluidity was slightly deteriorated when a small amount of Mg was added. An isothermal heating process after casting further improved the strength. However AlCu intermetallic compounds formed and their thickness increased during the heating process. As a result, deterioration in the interfacial adhesion strength was observed after an excessive annealing treatment.

Lightweight Optimization of Infant Pop-up Seat Frame Using DMTO in Static Condition (DMTO 기법을 활용한 정적 하중환경의 유아용 팝업시트 프레임의 경량화)

  • Hong, Seung Pyo;Cha, Seung Min;Shin, Dong Seok;Jeon, Euy Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-110
    • /
    • 2022
  • This paper proposes a solution to the problems of manufacturing cost and processability by applying discrete material and thickness optimization (DMTO) and minimizing the use of high-strength, lightweight materials in the optimization process. A simple infant pop-up seat model was selected as the application target, and the weight reduction effect and variation in strength according to the optimization results were observed. In this study, a simplified finite element model of an infant pop-up seat frame was first constructed. The model was used to perform a static structural analysis to verify the weight and strength of each part. The D-optimal design of the experimental method was then used to observe the influence of each part on the weight and strength. This process was applied using discrete thickness optimization (DTO) (which applies high-strength, lightweight materials and optimizes only the thickness) and DMTO (which considers both the material and thickness). The DTO and DMTO results were compared to verify the design method that determines the major parts and simultaneously considers the material and thickness. Accordingly, in this study, an optimal lightweight design that satisfied the strength standards of the seat frame was derived. Furthermore, discretization parameters were used to minimize the application of high-strength, lightweight materials.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

Study on the Fluidity and Strength Properties of High Performance Concrete Utilizing Crushed Sand

  • Park, Sangjun
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.231-237
    • /
    • 2012
  • Recently, it has been difficult to get natural sand for concrete due to an insufficient supply in Korea. Crushed sand was thought as a substitute and previous research has been focused on low fluidity and normal compressive strength (24-30 MPa). Study on high performance concrete using crushed sand is hardly found in Korea. In this study it was investigated that the effect of the crushed sand on fluidity and compressive strength properties of high performance concrete. Blending crushed sand (FM: 3.98) produced in Namyangju, Kyunggido and sea sand (FM: 2.80) produced in Asan bay in Chungnam. The final FMs of fine aggregate were 3.50, 3.23, and 3.08. W/B was set as 0.25 to get high performance. With the test results an analysis of relationship was performed using a statistical program. It was shown that strength property of concrete using crushed aggregate at the very early age or after specific time was mainly affected by strength development properties of binders instead of the crushed sand.

The Application of High Strength Concrete in Batcher Plant and its Workability (레미콘 공장에서 적용 가능한 고강도 콘크리트 및 시공성에 관한 연구)

  • Kim, Jeong-Sik;Kim, Bong-Hyun;Jung, Jin;Lee, Jae-Sam;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.69-74
    • /
    • 1998
  • Concrete has a many problems to apply high rise building of its low strength to weight and low ductility, compared to steel products. Therefore, it is necessary to make high strength concrete for applying to night rise building. In the experiment, the high strength concrete was made in variable of unit weight of binder, water to binder ratio(W/B), and sand to aggregate ratio(S/a) using batcher plant. As a result, it was possible to make high strength concrete using only materials for ordinary concrete without admixtures such like silica fume in batcher plant.

  • PDF

Influence of Al, Cu and Ni Additions on Mechanical Properties of Hot-Rolled Fe-9Mn-0.2C Medium-Manganese Steels

  • Young-Chul Yoon;Sang-Gyu Kim;Sang-Hyeok Lee;Byoungchul Hwang
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.1007-1011
    • /
    • 2021
  • The microstructure and mechanical properties of hot-rolled Fe-9Mn-0.2C medium-manganese steels with different Al, Cu, and Ni contents were investigated in this study. Based on the SEM, XRD, and EBSD analysis results, the microstructure was composed of martensite, band-type delta ferrite, and retained austenite phases depending on the Al, Cu, and Ni additions. The tensile and Charpy impact test results showed that the sole addition of Al reduced significantly impact toughness by the presence of delta-ferrite and the decrease of austenite stability although it increased yield strength. However, the combined addition of Al and Cu or Ni provided the best combination of high yield strength and good impact toughness because of solid solution strengthening and increased austenite stability.

The Effect of the Spray-Dried Ceramic Granules' Compressive Strength on the Aerosol Deposition method (분무건조된 세라믹 과립분말의 압축강도가 에어로졸 데포지션 공정에 미치는 효과)

  • Kim, Jong-Woo;Ryu, Jungho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Ahn, Cheol-Woo;Choi, Joon-Hwan;Park, Dong-Soo
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • Recently, Aerosol Deposition method has attracted considerable attention because of its advantages to produce ceramic coatings on various substrates at room temperature. This method is strongly dependent on the raw powder, which should have high mobility with carrier gas and moderate mechanical strength to be crushed onto the substrate. In this report, the effects of the ceramic granules' compressive strength on the ceramic coating formation are discussed. The ceramic granules were prepared by spray-drying method and heat treated at various temperatures. It was found that at the moderate mechanical strength of ceramic granules gave more effective film formation behavior during Aerosol Deposition method.

An Experimental Study on Mortar Beam Stengthened by Composite Material (모르타르 보의 복합재료 보강 효과에 관한 실험적 연구)

  • 차승환;정일섭
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2000
  • Excellent environmental durability and handy installation procedure as well as high specific strength and stiffness have introduced fiber-reinforced polymeric composite materials into the civil and architectural engineering field. This study presents the considerably enhanced strength characteristics of the mortal beams by being reinforced with epoxy-bonded carbon fiber sheets(CFS). Three point bending and Charpy impact tests were performed on both of bare and reinforced mortar specimens. The influences of length, and the number of reinforcing plies were investigated. Strength reduction due to pre-existent notch was lessened dramatically. The acoustic emission(AE) measurement revealed the progressive damage process in reinforced specimens.

  • PDF