• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.034 seconds

Characteristics of the 80MPa High Strength Concrete according to the Hot Weather Outside Temperature conditions (서중 외기온도 조건에 따른 80 MPa 고강도콘크리트의 특성)

  • Jung, Yong-Wook;Lee, Seung-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.688-696
    • /
    • 2016
  • This paper evaluates the effect of hot weather conditions on the fresh concrete characteristics of 80-MPa high-strength concrete. The slump flow, packing ability, setting time, hydration heat, and compressive strength were evaluated under exterior temperatures of $20^{\circ}C$, $30^{\circ}C$, and $40^{\circ}C$. The slump flow, arrival speed of 500 mm, and their changes with the elapsed time were found to bring the occurrence of rapid slump loss forward by about 30 minutes when increasing the temperature by $10^{\circ}C$ from $20^{\circ}C$. The initial and final setting times of the concrete at $20^{\circ}C$ were 7 hours and 12 hours, which were reduced by 1 hour and 3 hours at $30^{\circ}C$ and by 2 hours and 5 hours at $40^{\circ}C$, respectively. The hydration heat characteristics at $20^{\circ}C$ and $30^{\circ}C$ were similar in terms of the highest temperature of the concrete casting depth and the time when the maximum temperature occurred. However, at $40^{\circ}C$, the maximum temperature occurred about 4 hours earlier, and the highest temperature per the concrete casting depth increased by about $12^{\circ}C$. Therefore, it is concluded that the characteristics can vary according to the exterior temperature. Thus, quality assurance should consider workability, temperature cracks due to hydration heat, the properties of strength development, and other characteristics.

Influnce of machinability on the Tool life of ADI Materials in Drilling (ADI 재료의 드릴 가공시 절삭특성이 공구수명에 미치는 영향)

  • 조규재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • Drilling tests were carried out austempered ductile castiron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austenized at 90$0^{\circ}C$ for 1 hour and then wear was kept at 375$^{\circ}C$ for 2 hours. Austempered ductile cast iron contains a great deal of retaine austenite which contributes to an improvement of impact strength, In this paper, machinability of ADI was investigated by drilling experimentation. The results obtained are as follows: a)Flank wear increases logarithmically with the increases of cutting time. b) Relation of flank wear and cutting force can be appiled to $F_z$ = 925VB + 820 for the cutting suggested condition. c) Drilling hole number of about 2 times can be reduced more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF

Co-Re-based alloys a new class of material for gas turbine applications at very high temperatures

  • Mukherji, D.;Rosler, J.;Wehrs, J.;Eckerlebe, H.;Gilles, R.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.205-219
    • /
    • 2012
  • Co-Re alloy development is prompted by the search for new materials for future gas turbines which can be used at temperatures considerably higher than the present day single crystal Ni-based superalloys. The Co-Re based alloys are designed to have very high melting range. Although Co-alloys are used in gas turbine applications today, the Co-Re system was never exploited for structural applications and basic knowledge on the system is lacking. The alloy development strategy therefore is based on studying alloying additions on simple model alloy compositions of ternary and quaternary base. Various strengthening possibilities have been explored and precipitation hardening through fine dispersion of MC type carbides was found to be a promising route. In the early stages of the development we are mainly dealing with polycrystalline alloys and therefore the grain boundary embrittlement needed to be addressed and boron addition was considered for improving the ductility. In this paper recent results on the effect of boron on the strength and ductility and the stability of the fine structure of the strengthening TaC precipitates are presented. In the beginning the alloy development strategy is briefly discussed.

Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys (Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

Characterization of Water Vapor Transmission & Dielectric Breakdown in Insulation Materials for Jacket Compound (자켓 컴파운드용 절연재의 수증기투과 및 절연파괴 특성)

  • Song, Jae-Joo;Han, Jae-Hong;Song, IL-Keun;Han, Yong-Hee;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.52-56
    • /
    • 2001
  • Experiments of 2 type on insulating compounds accomplished to change PVC using in URD(Underground) power cable jacketing. one was DB (Dielectric Breakdown) test on the pure base resins and the others were WVT(Water Vapor Transmission) test on the compounds which contained C/B(Carbon Black), anti-oxidant to base resin. a kind of specimens made by pressing to resin of pellet or lump form was HDPE(High Density Polyethylene), MDPE(Medium Density Polyehylene), LDPE(Low Density Polyethylene), LLDPE(Linear Low Density Polyethylene), PVC (Polyvinyl Chloride). As a results of AC DB and WVT test, we saw that strength of Insulation was HDPE > LLDPE ≒ MDPE > LDPE and WVT ratio was HDPE < LLDPE < MDPE < LLDPE ≒ LDPE${\ll}$PVC. WVT of PVC using for jacket showed characteristic 15 times more than MDPE or LLDPE. Therefore, to development of watertightness cable, our works present need of Changing in insulating materials

  • PDF

Effect of Pre-immersion Time on Electrophoretic Deposition of Paint on AZ31 Magnesium Alloy

  • Van Phuong, Nguyen;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.45-45
    • /
    • 2014
  • The importance of magnesium alloys has significantly increased due to their low density, high strength/weight ratio, very good electromagnetic shielding features and good recyclability. However, unfortunately, Mg alloys are very susceptible to corrosion due to their high chemically activities (= -2.356 V vs. NHE at $25^{\circ}C$), hence, most commercial Mg alloys require corrosion protective coatings. Organic coating such as painting, powder coating and electrophoretic deposition of paint (E-paint) is typically used in the final stages of the coating process of Mg alloys. In this study, effect of pre-immersion time on the deposition of E-paint on AZ31 Mg alloy was investigated. It was found that during pre-immersion time, AZ31 Mg alloy rapidly reacts with E-paint solution and paint can be self-deposited on the AZ31 surface without applying of electric current. The pore size on the E-painted AZ31 Mg alloy increased with increasing pre-immersion time from 0 to 5 min. Both adhesion and corrosion resistance of E-painted AZ31 Mg alloy decreased with increasing pre-immersion time. The best E-paint AZ31 Mg alloy, which showed stronger adhesion after water immersion test and good corrosion resistance, was started to deposit after 5 s of pre-immersion time.

  • PDF

Accelerated the environmental stress cracking (ESC) study of polymer materials using a plastic ruler and a PVC eraser (플라스틱 자와 지우개를 이용한 고분자재료의 환경응력파괴(ESC) 가속실험 방법에 관한 연구)

  • Park, Joon Hyung;Ahn, Won Bae;Yoo, Jin Seong;Kim, Kyoung Mun;Nam, Kyoung Hyun
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • The study of environmental stress cracking (ESC) by contact with plastic rulers and PVC erasers which was artificially added to the external stress was carried out in order to accelerate the chemicals crack. To analyze a blooming plasticizer that migrates from the inside of blended eraser to the surface of the eraser, the ESC experiments were carried out at room temperature and $50^{\circ}C$ conditions. The chemicals crack shape caused by the plasticizer and the brittle fracture shape resulted from the external stress were observed in consequence with the cross-sectional surface analysis of the ruler crack by the ESC. The bending strength of the plastic rulers were fractured prior to the yield point and it had low bending flexure stress. We presented that ESC of polymer materials was affected by the polarity of the chemicals and polymer, the exposure time to chemicals, the exposure temperature and the level of strain on the polymer.

R&D Trend on Surface Treatment of Magnesium Alloys (마그네슘합금의 표면처리에 관한 연구개발 동향)

  • Shim, Jae-Dong;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.72-80
    • /
    • 2013
  • Recently, consumption of magnesium alloys has increased especially in the 3C (computer, communication, camera) and automobile industries. The structural application of magnesium alloys has many advantages due to their low densities, high specific strength, excellent damping and anti-eletromagnetic properties, and easy recycling. However, practical application of these alloys has been limited to narrow uses of mild condition, because they are inferior in corrosion resistance and wear resistance due to their high chemical reactivity and low hardness. Various wet and dry processes are being used or are under development to enhance alloy surface properties. Various conversion coating and anodizing methods have been developed in a view of eco-friendly concept. The conventional technologies, such as diffusion coating, sol-gel coating, hydrothermal treatment, and organic coating, are expected to be newly applicable to magnesium alloys. Surface treatments for metallic luster or coloring are suggested using the control of the micro roughness. This report reviews the recent R&D trends and achievements in surface treatment technologies for magnesium alloys.

Impact Resistance of Al2O3-SiC Composites Against High Velocity Copper Jet (고속 구리제트에 대한 알루미나-탄화규소 복합재료의 충돌 저항물성)

  • Kim, Chang-Wook;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.660-665
    • /
    • 2006
  • The mechanical properties of $Al_2O_3$-SiC composites manufactured with adding various amount and size of SiC particles have been measured and analyzed. Generally, the elastic modulus of the composites shows about 50% less than that of PL-8 (45 wt% $Al_2O_3$-51 wt% $SiO_2$-4 wt% other oxides), but the flexural strength is similar with each other. The impact resistance property of $Al_2O_3$-SiC composite against high velocity copper jet was lower than that of PL-8 when SiC particles of approximately 3 $\mu$m diameter was added to. It is caused probably due to the micro-pores made by oxidation of SiC particles. However, in the case of the less-weighted $Al_2O_3$-SiC composite adding to 10 wt% SiC with average diameter of 10 $\mu$m and sintering at 1200$^{\circ}C$, the impact resistance property was improved up to 37 percent compared with that of PL-8.

Application of Computational Fluid Dynamic Simulation to SiC CVD Reactor for Mass Production (대량 생산용 SiC CVD 리엑터에의 전산유체역학 시뮬레이션의 적용)

  • Seo, Jin-Won;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.533-538
    • /
    • 2013
  • Silicon carbide (SiC) materials are typical ceramic materials with a wide range of uses due to their high hardness and strength and oxidation resistance. In particular, due to the corrosion resistance of the material against acids and bases including the chemical resistance against ionic gases such as plasma, the application of SiC has been expanded to extreme environments. In the SiC deposition process, where chemical vapor deposition (CVD) technology is used, the reactions between the raw gases containing Si and C sources occur from gas phase to solid phases; thus, the merit of the CVD technology is that it can provide high purity SiC in relatively low temperatures in comparison with other fabrication methods. However, the product yield rarely reaches 50% due to the difficulty in performing uniform and dense deposition. In this study, using a computational fluid dynamics (CFD) simulation, the gas velocity inside the reactor and the concentration change in the gas phase during the SiC CVD manufacturing process are calculated with respect to the gas velocity and rotational speed of the stage where the deposition articles are located.