• Title/Summary/Keyword: high strength materials

Search Result 3,820, Processing Time 0.031 seconds

Mechanical and Thermal Conductivity Properties of Yttrium Nitrate Added AlN Sintering Body (Y(NO3)3·6H2O 첨가된 AlN 소결체의 기계적 및 열전도도 특성)

  • Chung, J.K.;Lee, J.H.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • Aluminum nitride (AlN) is used by the semiconductor industry that has requirements for high thermal conductivity. The theoretical thermal conductivity of single crystal AlN is 320W/mK. Whereas, the values measured for polycrystalline AlN ceramics range from 20 W/mK to 280 W/mK. The variability is strongly dependent upon the purity of the starting materials and non-uniform dispersibility of the sintering additive. The conventional AlN sintering additive used yttria ($Y_2O_3$), but the dispersibility of the powder in the mixing process was important. In this study, we investigated the mechanical and thermal conductivity of yttrium nitrate ($Y(NO_3)_3{\cdot}6H_2O$), as a sintering additive in order to improve the dispersibility of $Y_2O_3$. The sintering additives content was in the range of 2 to 4.5wt.%. The density of AlN gradually increased with increasing contents of sintering additive and the flexural strength gradually increased as well. The flexural strength of the sintered body containing 4 wt% of $Y_2O_3$ and $Y(NO_3)_3{\cdot}6H_2O$ was 334.1 MPa and 378.2 MPa, respectively. The thermal conductivities were 189.7W/mK and 209.4W/mK, respectively. In the case of hardness, there was only a slight difference and the average value was about 10 GPa. Therefore, densification, density and strength values were found to be proportional to its content. It was confirmed that AlN using $Y(NO_3)_3{\cdot}6H_2O$ displayed relatively higher thermal conductivity and mechanical properties than the $Y_2O_3$.

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites (적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발)

  • Park, Geon-Tae;Lee, Dong-Woo;Byun, Joon-hyung;Song, Jung-il
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.115-124
    • /
    • 2020
  • Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

Thermal and Mechanical Properties of Alumina Cementitious Composite Materials (알루미나 시멘트에 기반한 복합재료의 열역학적 특성)

  • Yang, In-Hwan;Lee, Jung-Hwan;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • The mechanical and thermal properties of high temperature aluminate cementitious thermal storage materials were investigated in this paper. Alumina cement was used as basic binder and the effect of the replacement of fly ash, silica fume, calcium sulfo-aluminate and graphite for alumina cement was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling, and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results show that the residual compressive strengths of mixtures with alumina cement only, or alumina cement and silica fume were greater than those of the others. Additionally, the specific heat of mixture with graphite was largest in all the mixtures used in the study. The results of this study could be used to provide realistic information for material properties in thermal energy storage concrete in the future.

Fabrication of High Strength Transparent Bulletproof Materials by Ion Exchanged Borosilicate Glass (보로실리케이트 유리의 이온교환에 의한 고강도 투명방탄소재의 제조)

  • Kim, Young-Hwan;Shim, Gyu-In;Lim, Jae-Min;Choi, Se-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1121-1126
    • /
    • 2010
  • Borosilicate glass (81% $SiO_2$-2% $Al_2O_3$-13% $B_2O_3$-4% $Na_2O_3$) was prepared, and the glass was ion exchanged in $KNO_3$ powder containing different temperature and time. The $K^+-Na^+$ ion exchange takes place at the glass surface and creates compressed stress, which raise the mechanical strength of the glass. The depth profile of $Na^+$ and $K^+$ was observed by electron probe micro analyzer. With the increasing heat-treatment time from 0min to 20min, the depth profile was increased from 17.1um to 29.4um, but mechanical properties were decreased. It was also found out that excessive heat treatment brings stress relaxation. The Vickers hardness, Fracture Toughness and bending strength of ion exchanged samples at $570^{\circ}C$ for 10min were $821.8H_v$, $1.3404MPa{\cdot}m^{1/2}$, and 953MPa, which is about 120%, 180%, and 450% higher than parent borosilicate glass, respectively. Transmittance was analyzed by UV-VIS-NIR spectrophotometer. Transmittance of ion exchanged borosilicate glass was decreased slightly at visible-range. It can be expected that transparent bulletproof materials in more light-weight and thinner by ion exchanged borosilicate glass.

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

Workability and compressive behavior of PVA-ECC with CNTs

  • Lee, Dongmin;Lee, Seong-Cheol;Yoo, Sung-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers have been focusing on adding CNTs to concrete mixture. However, even CNTs do not compensate the weakness that concrete exhibits brittle behavior after cracking. Separately, over the past few decades, a number of studies have been conducted on fiber reinforced concrete which exhibits ductile behavior due to fibers bridging cracks. However, only limited studies have been conducted to employ the advantages of the both materials together. In this study, an experimental program has been conducted to investigate the effect of CNTs on the workability and the compressive behavior of PVA-ECC which exhibits ductile tensile behavior with well-distributed cracks even without a conventional rebar. In addition to the compression test, SEM analysis has been also conducted for detailed investigation in the microstructure. The variable was the CNTs mix ratio, which were set to 0.00, 0.25, and 0.50 wt.% to the binding materials. It was observed though the test results that as the CNTs mix ratio increased, the workability considerably decreased with the reduced slump and slump flow. From the compression test results, it was also investigated that the compressive behavior was improved since the compressive strength, the strain corresponding to the compressive strength, and the modulus of elasticity increased with an increase of CNTs mix ratio. The contents of this paper will be useful for relevant research areas such as fiber reinforced concrete with CNTs which might be applied for high performance TMB concrete segments.

An Experimental Study on Development of EMP Shielding Concrete Using Carbon-Based Materials and Industrial By-Products (카본계 재료 및 산업부산물을 활용한 EMP 차폐 콘크리트 개발에 관한 실험적 연구)

  • Min-Sung Kim;Cheol-Hyun Yoon;Seung-Ho Byun;Tae-Beom Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.48-54
    • /
    • 2023
  • In this research, The basic physical properties and EMP shielding performance by thickness were evaluated for optimum composition of EMP shield concrete that can be applied on-site by mixing carbon-based materials with high conductivity into concrete that uses electric furnace oxidized slag (EOS). As a result of the evaluation, it was confirmed that the slump decreased as the amount of mixed carbon fib er (CF) increased, and increased when milled carb on (MCF) was mixed. As for the compressive strength, it was confirmed that EOS enhanced the strength compared to NA, and it was confirmed that the strength decreased when CF and MCF were mixed. As the thickness of the EMP shielding measurement increases, the shielding rate increases, and it was confirmed that the type of conductive material and the thickness of the test specimen have a greater influence on the shielding rate than the Amount of conductive material added. As a result of a comparative evaluation, EOS CF 0.2 is considered suitable for EMP shield concrete formulation.

Influence of DIC Frame Rate on Experimental Determination of Instability and Fracture Points for DP980 Sheets under Various Loading Conditions (다양한 하중 조건에서 DP980 판재의 불안정성 및 파단점 결정시 DIC Frame Rate의 영향)

  • Noh, E.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.28 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • The past recent years have seen an increasing use of high-strength steel sheets in the automotive industry. However, the formability and damage prediction of these materials requires accurate acquisition of necking and fracture strains. Digital image correlation (DIC) is used to accurately capture the necking and fracture strains during testing. The fact that single time points of capturing vary with frame rate makes the need for an investigation necessary. For the high-strength steel DP980, the frame-rate dependences of the final necking and fracture strains values are analyzed here. To eliminate the influence of gauge length, the strains were measured locally by DIC. Results for three specimen shapes obtained with frame rates of 1 and 900 fps (frames per second) were considered and based on them, triaxiality failure diagrams (TFD) are established. It was observed that after diffuse necking, the deformation path departed from the initially linear one, and the stress triaxiality grew with ongoing deformation. It was further revealed that the frame rate-dependence of the necking strain was rather low (< 2%), whereas the fracture strain could be underestimated by up to 8% when the lower frame rate of 1 fps was used (compared with 900 fps). In this study, this issue is investigated while taking into consideration the three different triaxialities. These results demonstrate the importance of choosing an appropriate frame rate for the determination of necking and fracture strains in particular.

Lead-free Solder for Automotive Electronics and Reliability Evaluation of Solder Joint (자동차 전장용 무연솔더 및 솔더 접합부의 신뢰성 평가)

  • Bang, Jung-Hwan;Yu, Dong-Yurl;Ko, Young-Ho;Yoon, Jeong-Won;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.26-34
    • /
    • 2016
  • Automotive today has been transforming to an electronic product by adopting a lot of convenience and safety features, suggesting that joining materials and their mechanical reliabilities are getting more important. In this study, a Sn-Cu-Cr-Ca solder composition having a high melting temperature ($>230^{\circ}C$) was fabricated and its joint properties and reliability was investigated with an aim to evaluate the suitability as a joining material for electronics of engine room. Furthermore, mechanical properties change under complex environment were compared with several existing solder compositions. As a result of contact angle measurement, favorable spreadability of 84% was shown and the average shear strength manufactured with corresponding composition solder paste was $1.9kg/mm^2$. Also, thermo-mechanical reliability by thermal shock and vibration test was compared with that of the representative high temperature solder materials such as Sn-3.5Ag, Sn-0.7Cu, and Sn-5.0Sb. In order to fabricate the test module, solder balls were made in joints with ENIG-finished BGA and then the BGA chip was reflowed on the OPS-finished PCB pattern. During the environmental tests, resistance change was continuously monitored and the joint strength was examined after tests. Sn-3.5Ag alloy exhibited the biggest degradation rate in resistance and shear stress and Sn-0.7Cu resulted in a relatively stable reliability against thermo-mechanical stress coming from thermal shock and vibration.