DOI QR코드

DOI QR Code

Development of 3D Woven Preform π-beam based on T-beam Made of Laminated Composites

적층복합재료 T-빔 기반의 3차원 직조 프리폼 π-빔 개발

  • Park, Geon-Tae (Department of Mechanical Engineering, Changwon National University) ;
  • Lee, Dong-Woo (The Research Institute of Mechatronics, Changwon National University) ;
  • Byun, Joon-hyung (Composite Research Center, Korea Institute of Materials Science) ;
  • Song, Jung-il (Department of Mechanical Engineering, Changwon National University)
  • Received : 2020.03.25
  • Accepted : 2020.05.18
  • Published : 2020.06.30

Abstract

Laminate composites, especially Carbon fiber-reinforced composites are wide used in various industry such as aerospace and automotive industry due to their high specific strength and specific stiffness. However, the laminate composites has a big disadvantage that delamination occurs because the arrangement of the fibers is all arranged in the in-plane direction, which limits the field of application of the laminate composites. In this study, we first developed a laminate composites T-beam in which π-beam and flat plate were combined and optimized the design parameters through structural analysis and mechanical tests. Afterwards, 3D weave preform T-beam was developed by applying the same design parameters of laminate composites T-beams, and improved mechanical strength was achieved compared to laminated structures. These findings are expected to be applicable to existing laminated composite structures that require increased strength.

적층복합재료, 특히 탄소섬유 복합재료는 금속에 비해 가벼우며 상대적으로 비강도 및 비강성이 뛰어나기 때문에 항공 우주 산업 및 자동차 산업 등과같이 광범위한 분야에서 사용되고 있다. 그러나, 적층 복합재료는 섬유의 배열이 모두 면내방향으로 배열되어있기 때문에 박리가 발생한다는 큰 단점이 있으며, 이는 적층복합재료의 응용분야를 제한한다. 본 연구에서는 먼저 π-빔과 평판이 결합된 형태의 적층복합재료 T-빔을 개발하고, 구조해석 및 기계적 물성평가를 통하여 설계변수를 최적화하였다. 이후 적층복합재료 T-빔의 설계변수를 3D 직조 프리폼에 동일하게 적용하여 T-빔을 개발하였으며, 적층구조에 비하여 향상된 기계적 강도를 달성할 수 있었다. 이러한 연구결과는 강도향상을 필요로 하는 기존의 적층복합재료 구조물에 적용 가능할 것으로 기대된다.

Keywords

References

  1. Kratz, J., Low, Y.S., and Fox, B., "Resource-friendly Carbon Fibre Composites: Combining Production Waste with Virgin Feedstock," Polymer Composites Science, Vol. 3, 2017, pp. 121-129.
  2. Pecas, P., Carbalho, H., Salman, H., and Leite, M., "Natural Fibre Composites and Their Applications: A Review," Composite Science, Vol. 2, 2018, pp. 66-67. https://doi.org/10.3390/jcs2040066
  3. Sridharan, S., "Delamination Behavior of Composites," Woodhead Publishing Series in Composites Science and Engineering, 1999, pp. 1-6.
  4. Chermoshentseva, A.S., Pokrovskiy, A.M., and Bokhoeva, L.A., "The Behavior of Delaminations in Composite Materials - Experimental Results," IOP Series: Materials Science and Engineering, Vol. 116, 2016, pp. 1-8.
  5. Stig, F., "3D-woven Reinforcement in Composites", KTH Engineering Sciences, 2012, pp. 3-28.
  6. Saboktakin, A., "3D Textile Preforms and Composites for Air-craft Structures: A REVIEW" International Journal of Aviation Aeronautics, Vol. 6, 2019, pp. 1-20.
  7. Stig, F., "An Introduction to the Mechanics of 3D-Woven Fibre Reinforced Composite", Licentiate Thesis, KTH Engineering Sciences, SWE, 2009.
  8. Owens, S.D., Schmidt, R.P., and Davis, J.J., "Tension Pull-off and Shear Test Methods to Characterize 3-D Textile Reinforced Bonded Composite Tee-Joints" Composite Structures: Theory and Practice, 2000, pp. 398-409.
  9. Khokar, N., "3D Fabric-forming Processes: Distinguishing Between 2D-weaving, 3D-weaving and an Unspecified Noninterlacing Process," The Journal of The Textile Institute, Vol. 87, 1996, pp. 97-106. https://doi.org/10.1080/00405009608659059