• Title/Summary/Keyword: high strength materials

Search Result 3,820, Processing Time 0.037 seconds

A review on the application of plastic waste in the reinforced concrete structures

  • K. Senthil;Suresh Jakhar;Manish Khanna;Kavita Rani
    • Advances in materials Research
    • /
    • v.13 no.2
    • /
    • pp.115-128
    • /
    • 2024
  • Concrete is the most significant material in the construction industry which is required to construct several facilities like roads, buildings, and bridges etc. which leads to the economic development of a country. But now days, in view of sustainable development and environmental problems, plastic waste management is one of the major environmental issues due to its non-biodegradable nature which allows it to stay in the landfills until they are cleaned up. To overcome all these concerns, plastic waste may be used as a substitute of natural fine and coarse aggregate in concrete and a valuable solution to utilize the plastic items which causes several problems. In order to, present study is focused on the affecting properties of concrete as workability, compressive strength, and tensile strength of concrete with using plastic waste and without using plastic waste. Based on the detailed literature, it was observed that the plastic waste is not affecting the quality and consistency of concrete. However, as the number of PVC particles in the mixture increased, the drying shrinkage values decreased and the inclusion of plastic flakes can mitigate drying shrinkage cracking which leads the higher durability of concrete. Based on the comprehensive literature, it was also observed that the plastic aggregate found to be suitable for low and medium strength concrete. However, the investigation on the application of plastic aggregate in the high strength concrete is found limited. It was concluded that the optimum percentage of the plastic aggregate was found about 20%.

Evaluation of Resistance Spot Weldability of SGAFC1180 Steel (SGAFC1180 TRIP강재의 저항 점용접성 평가)

  • Shin, Seok-Woo;Lee, Jong-Hun;Kim, Dae-Hwan;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.644-649
    • /
    • 2017
  • In the automobile industry, there is growing demand for lightweight vehicles due to environmental problems and rising oil prices. Therefore, aluminum alloys and special materials are being used to reduce the weight of vehicles, but there are still many difficulties to overcome in terms of cost and strength. Therefore, the application of advanced high strength steel (AHSS)is increasing. AHSS has good strength and formability.Safety regulations are becoming stricter, and 1.2-GPa super-high-strength steels are gradually being applied for the center pillar and roof rails. Thus, the application of different kinds of steels in automobile bodiesis also increasing gradually. This study evaluates the resistance point weldability and the characteristics of a welded part of SGAFC1180 1.2t steel. A simulation was used to observe the nugget formation and its growth behavior. The prediction performance showed a similar tendency within an error rate of 10%. Also, the effect of this behavior on the process resistance and dynamic resistance was investigated,along with the correlation between the shear tensile strength and nugget diameter.

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

Improving Impact Resistance of Polymer Concrete Using CNTs

  • Daghash, Sherif M.;Soliman, Eslam M.;Kandil, Usama F.;Taha, Mahmoud M. Reda
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.539-553
    • /
    • 2016
  • Polymer concrete (PC) has been favoured over Portland cement concrete when low permeability, high adhesion, and/or high durability against aggressive environments are required. In this research, a new class of PC incorporating Multi-Walled Carbon Nanotubes (MWCNTs) is introduced. Four PC mixes with different MWCNTs contents were examined. MWCNTs were carefully dispersed in epoxy resin and then mixed with the hardener and aggregate to produce PC. The impact strength of the new PC was investigated by performing low-velocity impact tests. Other mechanical properties of the new PC including compressive, flexural, and shear strengths were also characterized. Moreover, microstructural characterization using scanning electron microscope and Fourier transform infrared spectroscopy of PC incorporating MWCNTs was performed. Impact test results showed that energy absorption of PC with 1.0 wt% MWCNTs by weight of epoxy resin was significantly improved by 36 % compared with conventional PC. Microstructural analysis demonstrated evidence that MWCNTs significantly altered the chemical structure of epoxy matrix. The changes in the microstructure lead to improvements in the impact resistance of PC, which would benefit the design of various PC structural elements.

A Study on Corrosive Behavior of Spring Steel by Shot-Peening Process (쇼트피닝 가공을 통한 스프링강의 부식거동에 관한 연구)

  • An, Jae-Pil;Park, Keyung-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.325-330
    • /
    • 2004
  • Recently, the request for the high strength of material is more and more increased in the area of industrial environment and machinery. To accomplish the high strength of materials, carbonizing treatment, nitrifying treatment, shot-peening method are representatively applied, however, shot-peening method is generally used among the surface processes. Shot peening is a cold working process used to impact Compressive residual stressed in the exposed surface layers. Benefits due to shot peening are increase in resistance to fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this study, the influence of shot peening on the corrosion was investigated on spring steel immersed in 3.5% NaCl. The immersion test as performed on the two kinds of specimens. Corrsion potential, polarization curve, residual stress and etc, were investigated from experiment results. From test result the effect of shot peening on the corrosion was evaluated. The important results of the experimental study on the effects of shot peened on the environment corrosion of spring steels are as follows; In case of corrosion potential, shot peened specimen shows more activated negative direction as compared with parent mental. Surface of specimen, which is treated with the shot peened is placed as more activated state against inner base metal. It can cause t도 anti-corrosion effect on the base metal.

  • PDF

Performance Appraisal of the Ceramic Metal Resin Paints for Waterproof and Anti-Corrosion to Improve the Property of Concrete Structure (콘크리트 구조물의 표층부 내구성 증진을 위한 세라믹 메탈계 방수$\cdot$방식재 도료의 성능 평가 연구)

  • Jun Byung-Hun;Kim Jin-Sung;Kang Hyo-Jin;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.113-117
    • /
    • 2005
  • The ceramic metal resin paints for waterproof and anti corrosion is not long history in development of materials even many actual result. So far, no standard have been given to construction and maintenance method, Quality and property, it is real state that cannot afford to proper quality control in job site or production. This study has been test for the ceramic metal resin paints for water and anti corrosion, as the result, it have proper performance of job site and mechanical performance of compare to other existing. In particular, tensile strength indicates more high about $14.1N/mm^2$ than epoxy resin paints, and in elongation per unit length is more high It is shows having better adhesive strength than epoxy resin paint for crack on the concrete structure. Moreover, The ceramic metal paint for water and corrosion proofing have to have main performance is watertightness and resistance for external impact, chloride ion permeation, drinkable water elution.

  • PDF

Numerical Study on the Stress Safety of a Cylinder for an Injection Molding Machine (사출성형기용 실린더의 응력안전성에 관한 수치적 연구)

  • Kim, Chung-Kyun;Kim, Kyung-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-406
    • /
    • 2011
  • This study presents the stress safety analysis of a cylinder, which is manufactured by a tempered ASTM D2, tempered SM45C and normalized SM45C materials, respectively. The inner diameter of three cylinder models are 85mm, 95mm, and 11 Omm and the total length of a cylinder is 2,365mm for a high pressure injection molding machine. The FEM computed results show that the inner diameter of 85mm with a thick thickness of 62.5mm may produce the injection pressure of 325MPa and the inner diameter of 110mm with 50mm thickness reduces up to the injection pressure of 220MPa because of a reduced thickness of a cylinder. These injection pressures are enough for a high pressure injection molding machine assembled by ASTM D2 cylinder. And also, an injection cylinder manufactured by a tempered SM45C material in which is low priee may produce 225MPa injection molding pressure and this may sufficiently endure stress safety compared to that of ASTM D2 cylinder material. Thus, this study recommends that tempered SM45C cylinder is appropriated for a mild injection molding machine as an alternative cylinder material when the safety strength and low prices are considered. But the normalized SM45C cylinder material does not meet a stress safety of yield strength in general.

The Effect of Carbide Size on the Mechanical Properties of AISI E 52100 Steel (AISI E 52100 강(鋼)의 기계적(機械的) 성질(性質)에 미치는 탄화물(炭化物) 크기의 영향(影響))

  • Cho, K.R.;Kim, B.W.;Nam, T.W.;Lee, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.10-22
    • /
    • 1990
  • A study has been investigated on the effect of mechanical properties (tension strength, rotary bending fatigue strength, wear resistance, hardness) according to the carbide particle size variation by the treatment of 1) quenching tempering, and 2) quenching, subzero treatment and tempering. The material used in this investigation was a typical bearing steel, high C high Cr, AISI E 52100. The result obtained in this study were as follows : (1) Finer the carbide particle size increasing the hardness and retained austenite in same quenching condition. (2) Finer the carbide particle size reduced the tension and rotary bending fatigue which were resulted from austenite grain growth and carbide precipitation on grain boundry that induced by carbide refine heat treatment. (3) Finer the carbide particel size increasing the wear resistance which were resulted by uniform distribution of carbide and increased hardness induced by microstructural uniform hardenability of matrix. (4) When the carbide particles were refinded, subzero treatment is effective only wear resistance and hardness.

  • PDF

Evaluation of incorporating metakaolin to evaluate durability and mechanical properties of concrete

  • Joshaghani, Alireza;Moeini, Mohammad Amin;Balapour, Mohammad
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.241-255
    • /
    • 2017
  • Concrete is known to be the most used construction material worldwide. The environmental and economic aspects of Ordinary Portland Cement (OPC) containing concrete have led research studies to investigate the possibility of incorporating supplementary cementitious materials (SCMs) in concrete. Metakaolin (MK) is one SCM with high pozzolanic reactivity generated throughout the thermal activation of high purity kaolinite clay at a temperature ranging from $500^{\circ}C$ to $800^{\circ}C$. Although many studies have evaluated the effect of MK on mechanical properties of concrete and have reported positive effects, limited articles are considering the effect of MK on durability properties of concrete. Considering the lifetime assessment of concrete structures, the durability of concrete has become of particular interest recently. In the present work, the influences of MK on mechanical and durability properties of concrete mixtures are evaluated. Various experiments such as slump flow test, compressive strength, water permeability, freeze and thaw cycles, rapid chloride penetration and surface resistivity tests were carried out to determine mechanical and durability properties of concretes. Concretes made with the incorporation of MK revealed better mechanical and durability properties compared to control concretes due to combined pozzolanic reactivity and the filler effect of MK.