• Title/Summary/Keyword: high strength materials

Search Result 3,820, Processing Time 0.034 seconds

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

A Study for Application of Polycarboxilic Type Admixture to Precast High-Strength Concrete Piles (프리캐스트 고강도 콘크리트(PHC) 파일에 조강형 폴리카본산(PC)계 혼화제의 적용에 관한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Park, Chul Ju;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.263-270
    • /
    • 2011
  • In this study, the performance of Poly-Naphthalene Sulfonate (PNS) type-admixture used widely in South Korea and Polycarboxilic type-admixture(i.e., WF2000) developed in the J company of the domestic, for precast concrete products produced in the factories, was evaluated. With the 20% reduced usage of WF2000 compared to PNS type-admixture, workability was considerably improved due to high water-reducing ratio, accelerating effect of concrete setting and accelerant dispersant action, which the product has, under the high temperature. In addition, the development of initial and long-term strengths of PHC plies was predominant. For WF2000, it is also possible to correspond with the change of original materials and environmental conditions since the control of water-reducing and supporting forces is feasible. Accordingly, it was noted that WF2000 is superior for deterioration of production & workability and bad casting problems in summer and the solution of initial strength reduction problem due to the delay of setting in winter.

Physical Characteristics of Concrete Using High-Fineness Cement and Fly Ash (고분말도 시멘트와 플라이애시를 사용한 콘크리트의 물리적 특성)

  • Lee, Young-Do;Ha, Jung-Soo;Kim, Han-Sic
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.323-330
    • /
    • 2019
  • The cement industry is considered a major industry for reducing greenhouse gases, increasing the amount of binding materials that can replace cement in concrete is known as the most effective method for reducing carbon dioxide. Therefore, research is being carried out to utilize large quantities of by-products that can be used as alternatives to cement. However, there are problems with reduced strength at early age and retarded setting for major reasons that do not increase the amount of mixture of binders used to replace cement. Thus, in this study, normal cement and high-fineness cement were used and physical properties were reviewed by placing differences in fly ash usage depending on the type of cement. As a result, the characteristics of strength were similar, and the hydration temperature was the same level. Also, the durability test showed that the length change, carbonation resistance were better than those of normal cement. Therefore, it is confirmed that the use of high-fineness cement is effective to reduce the amount of cement used and using more by-products.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Consolidation of Powders by magnetic pulsed compaction (자기펄스 가압 성형장치를 이용한 분말성형)

  • Kim, Jun-Ho;Kim, Hyo-Seob;Koo, Jar-Hyung;Lee, Jeong-Koo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.390-393
    • /
    • 2008
  • In this research, we introduce a new process for the consolidation of different types of powders such as metal and ceramic powders by using a magnetic pulsed compaction (MPC). The successful consolidation of many kinds of powers including nanopowder by MPC has been presented. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructure of the MPCed materials. It was found that effective properties of high strength and full density maintaining nanoscal microstructure were achieved. finally, optimization of the compaction parameters and sintering conditions could lead to the good consolidation of powders (metal, ceramic, nano-powder) with higher density, and even further enhanced mechanical properties.

  • PDF

Plastic Deformation Behavior of Structural Nano Metallic Materials (구조용 나노금속재료의 소성변형 특성)

  • Yoon, S.C.;Pham, Q.;Bock, C.H.;Kwak, E.J.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.25-26
    • /
    • 2007
  • At the time when nanostructured materials (NSMs) are becoming a major focus of materials research, the attention of researchers is turning more to their mechanical performance. In contrast with conventional coarse grained materials, which are either strong or ductile, but rarely both at the same time, it is expected that with NSMs both high strength and ductility can be achieved and confirmed by several experimental studies. In spite of the significant interest and efforts in the mechanical properties of NSMs, deformation mechanisms during plastic deformation as well as elastic deformation are not well established yet. In this talk, the deformation mechanisms of NSMs under various grain sizes, temperatures and strain rates were investigated. It is based on recent modelling that appears to provide a conclusive description of the phenomenology and the mechanisms underlying the mechanical properties of NSMs. Based on the theoretical model that provides an adequate description of the grain size dependence of elasticity and plasticity covering all grain size range from coarse down to the nanoscale, the tensile deformation response of NSMs, especially focusing on the deformation mechanisms was investigated.

  • PDF

Surface Characterization of Cu as Electrolyte in ECMP (ECMP 공정에서 전해질에 따른 Cu 표면 특성 평가)

  • Kwon, Tae-Young;Kim, In-Kwon;Cho, Byung-Gwun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.528-528
    • /
    • 2007
  • Cu CMP widely has been using for the formation of multilevel metal interconnects by the Cu damascene process. And lower dielectric constant materials are required for the below 45nm technology node. As the dielectric constant of dielectric materials are smaller, the strength of dielectric materials become weaker. Therefore these materials are easily damaged by high down pressure during conventional CMP. Also, technical problems such as surface scratches, delamination, dishing and erosion are also occurred. In order to overcome these problems in CMP, the ECMP (electro-chemical mechanical planarization) has been introduced. In this process, abrasive free electrolyte, soft pad and low down force were used. The electrolyte is one of important factor to solve these problems. Also, additives are required to improve the removal rate, uniformity, surface roughness, defects, and so on. In this study, KOH and $NaNO_3$ based electrolytes were used for Cu ECMP and the electrochemical behavior was evaluated by the potentiostat. Also, the Cu surface was observed by SEM as a function of applied voltage and chemical concentration.

  • PDF

Influences of Anodizing and Thermal Oxidation on the Galvanic Corrosion between Aluminium and Titanium and GECM (GECM과 Al 및 Ti 간의 갈바닉 부식에 미치는 양극산화 및 열산화의 영향)

  • Kim, Young-Sik;Lim, Hyun-Kwon;Sohn, Young-Il;Yoo, Young-Ran;Chang, Hyun-Young
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.514-522
    • /
    • 2010
  • Graphite epoxy composite material (GECM) shows high specific strength and its application in the aerospace industry is gradually increasing. However, its application would induce galvanic corrosion between GECM and metallic materials. This work focused on the effects of anodizing and thermal oxidation on galvanic corrosion in a 3.5% NaCl solution between GECM and aluminium and titanium. In the case of anodized aluminium, galvanic corrosion resistance to the GECM was greatly improved by the anodizing treatment regardless of area ratio. In the case of anodized titanium, the anodizing by a formation voltage of 50V increased corrosion resistance of titanium in galvanic tests. Thermal oxidation of titanium also improved corrosion resistance of Ti to GECM.

Exploration of Aluminum Alloy using Multi-feeder 3D Additive Manufacturing-based Combinatorial Experiment (Multi-feeder 3차원 적층제조 기반 조합실험을 활용한 알루미늄 합금탐색)

  • Suwon Park;Yongwook Song;Jiyoon Yeo;Songyun Han;Hyunjoo Choi
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.255-261
    • /
    • 2023
  • Aluminum alloys are widely utilized in diverse industries, such as automobiles, aerospace, and architecture, owing to their high specific strength and resistance to oxidation. However, to meet the increasing demands of the industry, it is necessary to design new aluminum alloys with excellent properties. Thus, a new method is required to efficiently test additively manufactured aluminum alloys with various compositions within a short period during the alloy design process. In this study, a combinatory approach using a direct energy deposition system for metal 3D printing process with a dual feeder was employed. Two types of aluminum alloy powders, namely Al6061 and Al-12Cu, were utilized for the combinatory test conducted through 3D printing. Twelve types of Al-Si-Cu-Mg alloys were manufactured during this combinatory test, and the relationship between their microstructures and properties was investigated.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.