• Title/Summary/Keyword: high strength materials

Search Result 3,818, Processing Time 0.029 seconds

A Study on the Low Temperature & High-strength Low-alloy Material for Casting Steel of the Offshore Structures (해양구조물용 저온 고강도 Casting Steel 소재 개발)

  • Lee, Soo-Ho;Han, Ki-Hyoung;Bae, Jae-Ryu;Kim, Tae-Won;Park, Sang-Sik;Kang, Chung-Gil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.426-431
    • /
    • 2008
  • The high-strength low-alloy(HSLA) steels have low carbon contents($0.05{\sim}0.25%$ C) in order to produce adequate formability and weldability, and they have manganese contents up to 1.7%. Small quantities of silicon, chromium, nickel, copper, aluminum, molybdenum are used in various combinations. The results contained in this paper can provide the valuable information on the development of $-40^{\circ}C$ low temperature HSLA. Furthermore, the present experimental data will provide important database for casting steel materials of the offshore structure.

Three-dimensional finite element simulation and application of high-strength bolts

  • Long, Liji;Yan, Yongsong;Gao, Xinlin;Kang, Haigui
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.501-512
    • /
    • 2016
  • High-strength structural bolts have been utilized for beam-to-column connections in steel-framed structural buildings. Failure of these components may be caused by the bolt shank fracture or threads stripping-off, documented in the literature. Furthermore, these structural bolts are galvanized for corrosion resistance or quenched-and-tempered in the manufacturing process. This paper adopted the finite element simulation to demonstrate discrete mechanical performance for these bolts under tensile loading conditions, the coated and uncoated numerical model has been built up for two numerical integration methods: explicit and implicit. Experimental testing and numerical methods can fully approach the failure mechanism of these bolts and their ultimate load capacities. Comparison has also been conducted for two numerical integration methods, demonstrating that the explicit integration procedure is also suitable for solving quasi-static problems. Furthermore, by using precise bolt models in T-Stub, more accurately simulate the mechanical behavior of T-Stub, which will lay the foundation of the mechanical properties of steel bolted joints.

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Improving the brittle behaviour of high-strength concrete using keratin and glass fibres

  • Abdelsamie, Khaled;Agwa, Ibrahim Saad;Tayeh, Bassam A.;Hafez, Radwa Defalla Abdel
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.469-477
    • /
    • 2021
  • Keratin fibres are waste products of the poultry industry. Natural materials made from chicken feather fibres (CFFs) are used in concrete-reinforced composites in this study. Brittleness is a major problem of high-strength concrete (HSC) that leads to sudden failure at the ultimate capacity of concrete. Hence, this work aims to investigate effects of using CFFs on improving the brittle behaviour of HSC. Two scenarios are performed to analyse the effectiveness of using CFFs. HSC containing different ratios of CFF (0% as the control, 0.5%, 1%, 1.5%, 2%, and 3%) by volume are tested in the first scenario. Glass fibres (GF) are used to replace CFFs in the other scenario. Tests of fresh, hardened and morphological properties for concrete are performed. Results showed the enhanced brittle behaviour of HSC when using both types of fibres. The preferable ratio of both types of fibres is 1% by volume. Flexural and splitting tensile strengths increased by about 44.9 % and 42.65 % for mixes containing 0.1% GF, respectively. While they were increased by about 21.6 % and 21.16 % for mixes containing 0.1% CFF, respectively.

Influence of Minor Element on Microstructure and Mechanical Properties of TiFe Ultrafine Eutectic Alloys (TiFe 공정합금의 미소합금 첨가에 따른 미세구조 변화 및 기계적 물성)

  • Lee, Chan Ho;Jo, Jae Hyuk;Mun, Sang Chul;Kim, Jung Tae;Yeo, Eun Jin;Kim, Ki Buem
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.615-619
    • /
    • 2012
  • Recently, ultrafine grained (ufg, typically 100 > d > 500 nm) Ti-Fe eutectic materials have been highlighted due to their extraordinarily high strength and good abrasion resistance compared to conventional coarse grained (cg, d > $1{\mu}m$) materials. However, these materials exhibit limited plastic strain and toughness during room temperature deformation due to highly localized shear strain. Several approaches have been extensively studied to overcome such drawbacks, such as the addition of minor elements (Sn, Nb, Co, etc.). In this paper, we have investigated the influence of the addition of Gd and Y contents (0.3-1.0 at.%) into the binary Ti-Fe eutectic alloy. Gd and Y are chosen due to their immiscibility with Ti. Microstructural investigation reveals that the Gd phase forms in the eutectic matrix and the Gd phase size increases with increasing Gd content. The improvement of the mechanical properties is possibly correlated to the precipitation hardening. On the other hand, in the case of Ti-Fe-Y alloys, with increasing Y contents, primary phases form and lamellar spacing increases compared to the case of the eutectic alloy. Investigation of the mechanical properties reveals that the plasticity of the Ti-Fe-Y alloys is gradually improved, without a reduction of strength. These results suggest that the enhancement of the mechanical properties is closely related to the formation of the primary phase.

Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials (여러 레진계 치아고정 재료의 굴곡강도 및 탄성계수 비교)

  • Yoo, Je-In;Kim, Soo-Yeon;Batbayar, Bayarchimeg;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Purpose: Direct splinting material should have high flexural strength to withstand force during mastication and low modulus of elasticity to provide some movement while force applied for relief of stress. The purpose of this study was to compare flexural strength and modulus of elasticity of several resinous splinting materials. Materials and Methods: Four materials; Super-Bond C&B, G-FIX, G-aenial Universal Flo, FiltekTM Z350 XT; were used in this study. Fifteen rectangular bar specimens of each material were prepared. Three-point bending test were performed to determine physical properties. Maximum load at fracture was recorded and flexural strength and modulus of elasticity were calculated. One-way analysis of variance (ANOVA) and Scheffe's tests at a 0.05 level of significance were conducted on all test results. Results: Statistical analysis reveals that Super-Bond C&B had significant low mean value for flexible strength and the other three materials showed no significant difference. For modulus of elasticity, Super-Bond C&B exhibited statistically lower modulus of elasticity. G-FIX presented intermediate result, showing statistically higher modulus of elasticity than Super-Bond C&B but lower than G-aenial Universal Flo and FiltekTM Z350 XT. There was no significant difference on modulus of elasticity between G-aenial Universal Flo and FiltekTM Z350 XT. Conclusion: Using a G-FIX, the newly commercially available splinting material, which shows higher fracture resistance properties comparable to flowable and restorative composite resin and a relatively flexible nature might be a beneficial for stabilizing teeth mobility.

Fatigue Behavior of Composites with different Fiber Orientation (섬유 방향에 따른 복합재 피로특성에 관한 연구)

  • Kang, Tae-Young;An, Hyo-Seong;Chun, Heoung-Jae;Park, Jong-Chan
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2021
  • Due to the high specific strength and stiffness of the composite materials, the composite materials have been extensively used in various industries. In particular, carbon fiber reinforced composites are widely used in many mechanical structures. In addition, since carbon fiber reinforced composites have anisotropic properties, to understand the fatigue behavior of composites with different fiber orientation is very important for the efficient structural design. Therefore, in this paper, the effect fiber orientation on the fatigue life of composite materials was experimentally evaluated. For this purpose, tensile and fatigue tests were performed on the off-axis specimens (0°, 10°, 30°, 45°, 60°, 90°) of the composite materials. As a result of the fatigue tests, the fatigue strength of the composites decreased significantly as the fatigue strength slightly deviated from 0 degrees. On the other hand, the more deviated, the less decreased. This is because the role of supporting the load of fibers decreased as the stacking angle increased. In addition, the fatigue behavior was analyzed by introducing a fatigue strength ratio (Ψ) that eliminates the fiber orientation dependence of the off-axis fatigue behaviors on the unidirectional composites. The off-axis fatigue S-N lines can be reduced to a single line regardless of the fiber orientation by using the fatigue strength ratio (Ψ). Using the fatigue Ψ-N line, it is possible to extract back to any off-axis fatigue S-N lines of the composites with different fiber orientations.

Effects of Draw Ratio and Additive CaCO3 Content on Properties of High-Performance PE Monofilament (연신비와 첨가제 CaCO3가 PE 모노필라멘트의 물성에 미치는 영향)

  • Park, Eun-Jeong;Kim, Il-Jin;Lee, Dong-Jin;Kim, Jung-Soo;Lee, Young-Hee
    • Fashion & Textile Research Journal
    • /
    • v.23 no.2
    • /
    • pp.290-296
    • /
    • 2021
  • The effect of draw ratio (8, 10, 12, 14 times) and additive CaCO3 content (0, 0.5, 1.0, 1.5, 2.0, and 3.0 wt%) on the properties of high-performance PE monofilament was investigated in this study. As the draw ratio increased (8-14 times), the melting enthalpy (ΔHf), crystallinity, specific gravity, and tensile strength increased significantly. However, the draw ratio had little effect on the melting temperature (Tm) and crystallization temperature (Tc). The seawater fastness (stain and fade) of the hydrophobic PE monofilament prepared in this study showed an excellent grade of 4-5 in all draw ratios. To investigate the effect of the additive CaCO3 content on the properties of high-performance PE monofilament, the draw ratio was fixed at 14 times. It was found that the tensile strength of the PE monofilament sample containing 0.5 wt% of CaCO3 was much greater compared to the sample without CaCO3, but the elongation of the sample containing 0.5 wt% of CaCO3 was much less than the sample with 0 wt% CaCO3. However, in the case of the sample containing more than 0.5 wt% CaCO3, the tensile strength slightly decreased and the elongation slightly increased as the CaCO3 content increased. The seawater fastness (stain and fade) of the hydrophobic PE monofilament showed excellent grades of 4-5, regardless of the amount of additives. From the above results, it was found that the maximum draw ratio of 14 times with an additive of 0.5 wt% CaCO3 are the optimal conditions for manufacturing high-performance marine fusion materials with various fineness (denier) with high strength and low elongation.

The Effects of Process Parameters of Multi-Stage Forming on Springback for a U-Channel made of Ultra-High-Strength Steel (초고강도 소재가 적용된 U 형 채널 제품의 다단공정변수에 따른 스프링백 영향)

  • Suh, Chang-Hee;Jung, Yun-Chul;Lim, Yong-Hee;Yun, Hyo-Yun;Lee, Kyung-Hoon;Kim, Young-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.283-288
    • /
    • 2012
  • Ultra-high-strength steels (UHSSs) are widely used for lightweight automobile parts, and the control of springback is very important in sheet-metal forming. The object of this study is to verify the effects of multi-stage forming process parameters for U-channel-type automobile parts made of UHSS. Finite element analysis is carried out to predict the formability and springback. The main parameters considered for the multi-stage forming process are the die angle, die radius, and punch-forming direction. It is shown that multi-stage forming is very effective for reducing springback, and that a small punch-forming angle and die radius reduce springback, whereas the die angle does not have a large effect.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.