• Title/Summary/Keyword: high strength concrete column

Search Result 449, Processing Time 0.027 seconds

The Volumetric Ratio of Transverse Reinforcement of R/C Columns Considering Effective Lateral Confining Reduction Factor (유효횡구속압력 감소계수를 사용한 RC 기둥의 횡보강근량 평가)

  • Kim, Jong-Keun;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 2009
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to propose the volumetric ratio of transverse reinforcement for ultra-high strength concrete tied columns with 100 MPa compressive strength. Nineteen 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the main variables of axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. To improve the ductility behavior of RC column using ultra high strength concrete in a seismic region, We suggested the amount of transverse reinforcement for all data that satisfy the required displacement ductility ratio over 4. It is means that the lateral confining reduction factor (${\lambda}^c$) considering the effective legs, configuration and spacing of transverse reinforcement and axial load ratio was reflected for the volumetric ratio of transverse reinforcement.

Evaluation of Drying Shrinkage and Creep Characteristics by Strength Differences of Concrete Mixed with Admixture (혼화재료 혼입 콘크리트 강도 차에 따른 건조수축 및 크리프 특성 평가)

  • Park, Dong-Cheon;Song, Hwa-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.199-200
    • /
    • 2021
  • In the study, creep and dry shrinkage characteristics were evaluated to determine the material properties necessary for structural analysis such as column shortening and differential drying shrinkage. All the experiments were conducted in an constant temperature and humidity room. The mechanical properties as well as the specific creep and ultimate dry shrinkage values were derived. In addition the characteristics of the physical value of the high-strength fiber reinforced concrete were considered.

  • PDF

Structural Performance of Beam-Column Connections Using 51 mm Diameter with Different Anchorage Details (51 mm 대구경 철근을 사용한 외부 보-기둥 접합부의 정착상세별 구조성능 평가)

  • Kim, Jung-Yeob;Jung, Hyung-Suk;Chun, Sung-Chul;Kim, In-Ho;Choi, Chang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.201-208
    • /
    • 2017
  • In exterior beam-column joints, hooked bars are used for anchorage, but usage of high-strength and large-diameter bars increases, headed bar is preferred for solving steel congestion and difficulty in construction. To investigate the structural performance of headed bars, Six exterior beam-column joints were tested under cyclic loading. Tests parameter were the anchorage methods and concrete strength. The test results indicate that behavior of headed bar specimens shows similar performance with hooked bar specimens. All specimens failed by flexural failure of the beam. Headed bar specimens shows better performance in anchorage and joint shear. All specimens were satisfied the criteria of ACI374.1-05. Test results indicate that use of headed bar in exterior beam column joint is available.

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

An Experimental Study on the Mock-up test take advantage of the High Strength Concrete (초고강도 콘크리트를 이용한 CFT실물대 실험)

  • Son Young Jun;Kim Jae Eun;Yang Dong Il;Jung Keun Ho;Lim Nam Gi;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.458-461
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence. to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete $(800kg/cm^2)$ especially for CFT through the data from the real size mock-up.

  • PDF

Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes

  • Divyah, N.;Prakash, R.;Srividhya, S.;Sivakumar, A.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.387-400
    • /
    • 2022
  • The practice of using encased steel-concrete columns in medium to high-rise structures has expanded dramatically in recent years. The study evaluates existing methodologies and codal guidelines for estimating the ultimate load-carrying characteristics of concrete-encased short columns experimentally. The present condition of composite column design methods was analyzed using the Egyptian code ECP203-2007, the American Institute of Steel Construction's AISC-LRFD-2010, Eurocode EC-4, the American Concrete Institute's ACI-318-2014, and the British Standard BS-5400-5. According to the codes, the axial load carrying characteristics of both the encased steel and concrete sections was examined. The effect of load-carrying capacities in different forms of encased steel sections on encased steel-concrete columns was studied experimentally. The axial load carrying capacity of twelve concrete-encased columns and four conventional reinforced columns were examined. The conclusion is that the confinement was not taken into account when forecasting the strength and ductility of the encased concrete, resulting in considerable disparities between codal provisions and experimental results. The configuration of the steel section influenced the confining effect. Better confinement is achieved with the laced and battened section than with the infilled steel tube reinforced and conventionally reinforced section. The ECP203-2007 code reported the most conservative results of all the codes used.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.

The effect of active and passive confining pressure on compressive behavior of STCC and CFST

  • Nematzadeh, Mahdi;Fazli, Saeed
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.161-171
    • /
    • 2020
  • In this paper, an experimental study was conducted on the compressive behavior of steel tube confined concrete (STCC) and concrete-filled steel tube (CFST) columns with active and passive confinement. To create active confinement in the STCC and CFST specimens, an innovative method was used in this study, in which by applying pressure on the fresh concrete, the steel tube was laterally pretensioned and the concrete core was compressed simultaneously. Of the benefits of this technique are improving the composite column behavior, without the use of additives and without the need for vibration, and achieving high prestressing levels. To achieve lower and higher prestressing levels, short and long term pressures were applied to the specimens, respectively. Nineteen STCC and CFST specimens in three groups of passive, short-term active, and long-term active confinement were subjected to axial compression, and their mechanical properties including the compressive strength, modulus of elasticity and axial strain were evaluated. The results showed that the proposed method of prestressing the STCC columns led to a significant increase in the compressive strength (about 60%), initial modulus of elasticity (about 130%) as well as a significant reduction in the axial strain (about 45%). In the CFST columns, the prestressing led to a considerable increase in the compressive strength, a small effect on the initial and secant modulus of elasticity and an increase in the axial strain (about 55%). Moreover, increased prestressing levels negligibly affected the compressive strength of STCCs and CFSTs but slightly increased the elastic modulus of STCCs and significantly decreased that of CFSTs.

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

An Experimental Study on the Fire Resistance effect on load ratio and compressive strength of the CFT Column under loading in fire (CFT 기둥의 축력비 및 압축강도 변화에 따른 화재거동 영향인자에 관한 실험적 연구)

  • Cho, Kyung-Suk;Kim, Heung-Youl;Kim, Hyung-Jun;Kwon, In-Kyu;Park, Kyung-Hun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.371-376
    • /
    • 2010
  • The strength of steel material in a concrete filled steel tube (CFT) is reduced in fire, but the filled interior concrete structurally ensures the fire resistance due to its high thermal capacity. More, the contractibility of CFT is excellent since it can be constructed without form work. This research analyzed the interior concrete strength and deformation characteristics, which are the influence factors of the fire resistance of CFT, in proportion to the axial load ratio. The fire resistance performance according to changes of the axial load ratio showed great fluctuation. As $280{\times}280{\times}6$ CFT columns with the concrete strengths of 24 MPa and 40 MPa and the axial load ratios of 0.9, 0.6, and 0.2 in accordance with KS F 2257-1 and 7 were heated with loading to examine the fire resistance performance, the 24 MPa concrete exhibited the fire resistance time as 27, 113, and 180 minutes for the axial load ratios, 0.9, 0.6, and 0.2 respectively. In case of 40 MPa concrete, the fire resistance time were turned out to be 19 and 28 minutes for the axial load ratios, 0.9 and 0.6 respectively. The results of 40 MPa concrete showed the much lower fire resistance performance when comparing with those of 24 MPa concrete. The fire resistance performance was not increased significantly when the axial load ratio was reduced. Therefore, the deceased fire resistance performance of high strength concrete is assumed to be caused by the internal pressure increase upon the heat application.

  • PDF