• Title/Summary/Keyword: high speed switching

Search Result 662, Processing Time 0.027 seconds

Development and Revenue Service of Propulsion System Using Integrated Stack(PEM) and Heat Pipe (일체형 스택(PEM) 및 냉각장치를 적용한 전동차 추진제어장치 개발 및 상용화)

  • Gim, Myung-Han;Lee, Gwang-Guk;Park, Su-Yong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.680-685
    • /
    • 2007
  • Power semiconductor which is adapted in the rolling stock has a high practicality for capacity of high voltage and high speed switching. but it has a trouble of fever cause of high speed On, Off switching loss and the operating junction temperature is limited to $150^{/circ}C$ because is made from the silicon for the foundation material. Therefore, it is important to find a way out of this trouble and must make the countermeasure. In this research, the caloric value of the integrated PEM is calculated to adapt the optimized heat pipe and the reliability of the heat pipe is demonstrated through the cooling performance test and vibration test.

  • PDF

Characteristics of Non-Isolated OSAKA Converter -Characteristics of Three-Phase Soft-Switching Power Factor Corrected Converter for Large Scale Power Without Three-Phase Transformer-

  • Taniguchi, Katsunori;Shimomori, Wataru;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1383-1386
    • /
    • 2005
  • Non-isolated OSAKA Converter, which removes a three-phase transformer, is described in this paper. The converter switches once in every half cycle of an AC commercial power source. Therefore, it can solve many problems caused by the high frequency operation. The proposed converter achieves the soft-switching operation and the EMI noise can be reduced. In this circuit, the resonant capacitor, which is used for the soft-switching operation, is utilized for the improvement of an input current waveform. To achieve low cost and compact structure, non-isolated OSAKA converter removes a three-phase transformer of the OSAKA converter. By removing the three-phase transformer, three phase currents occur the interferences each other. To avoid the interference, a new switching method for non-isolated OSAKA converter is preposed. The converter can be constructed by the low-speed large power devices. The converter generates the low distorted input current waveforms with high power factor.

  • PDF

Design of L-Band High Speed Pulsed High Power Amplifier Using LDMOS FET (LDMOS FET를 이용한 L-대역 고속 펄스 고전력 증폭기 설계)

  • Yi, Hui-Min;Hong, Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.484-491
    • /
    • 2008
  • In this paper, we design and fabricate the L-band high speed pulsed HPA using LDMOS FET. And we propose the high voltage and high speed switching circuit for LDMOS FET. The pulsed HPA using LDMOS FET is simpler than using GaAs FET because it has a high gain, high output power and sin81e voltage supply. LDMOS FET is suitable for pulsed HPA using switching method because it has $2{\sim}3$ times higher maximum drain-source voltage(65 V) than operating drain-source voltage($V_{ds}=26{\sim}28\;V$). As results of test, the output peak power is 100 W at 1.2 GHz, the rise/fall time of output RF pulse are 28.1 ns/26.6 ns at 2 us pulse width with 40 kHz PRF, respectively.

Design and Analysis of Insulator Gate Bipolor Transistor (IGBT) with SiO2/P+ Collector Structure Applicable to 1700 V High Voltage (SiO2/P+ 컬렉터 구조를 가지는 1700 V급 고전압용 IGBT의 설계 및 해석에 관한 연구)

  • Lee Han-Sin;Kim Yo-Han;Kang Ey-Goo;Sung Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.907-911
    • /
    • 2006
  • In this paper, we propose a new structure that improves the on-state voltage drop and switching speed in Insulated Gate Bipolar Transistors(IGBTs), which can be widely used in high voltage semiconductors. The proposed structure is unique in that the collector area is divided by $SiO_2$, whereas the conventional IGBT has a planar P+ collector structure. The process and device simulation results show remarkably improved on-state and switching characteristics. Also, the current and electric field distribution indicate that the segmented collector structure has increased electric field near the $SiO_2$ corner, which leads to an increase of electron current. This results in a decrease of on-state resistance and voltage drop to $30%{\sim}40%$. Also, since the area of the P+ region is decreased compared to existing structures, the hole injection decreases and leads to an increase of switching speed to 30 %. In spite of some complexity in process procedures, this structure can be manufactured with remarkably improved characteristics.

Torque ripple reduction in DTC of induction motor driven by 3-level inverter (3레벨 인버터로 구동되는 유도전동기 직접토크제어의 토크리플 저감법)

  • Lee, Kyo-Beum;Song, Joong-Ho;Choy, Ick;Yoo, Ji-Yoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.620-631
    • /
    • 2000
  • A torque ripple reduction technique of direct torque control(DTC) for high power induction motors driven by 3-level inverters with the inverter switching frequency limited around 0.5-1.0kHz level is presented. It is noted that conventional DTC algorithms to reduce torque ripple are devised for applications with relatively high switching frequency above 2-3kHz. Such conventional algorithms can not accomplish satisfactory torque ripple reduction for 3-level inverter systems with lower switching frequency. A new DTC algorithm, especially for low switching frequency inverter system, illustrates relatively reduced torque ripple characteristics all over the operating speed region. Simulation and experimental results show the effectiveness of the proposed control algorithm.

  • PDF

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

Study on Implementation of an MPLS Switch Supporting Diffserv with VOQ-PHB (Diffserv 지원 VOQ-PHB방식의 MPLS 스위치의 구현에 관한 연구)

  • 이태원;김영철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.133-142
    • /
    • 2004
  • Recently, the growth of Internet and a variety of multimedia services through Internet increasingly demands high-speed packet transmission, the new routing function, and QoS guarantee on conventional routers. Thus, a new switching mechanical called the MPLS(Multi-Protocol Label Switching), was proposed by IETF(Internet Engineering Task Force) as a solution to meet these demands. In addition the deployment of MPLS network supporting Differentiated Services is required. In this paper, we propose the architecture of the MPLS switch supporting Differentiated Services in the MPLS-based network. The traffic conditioner consists of a classifier, a meter, and a marker. The VOQ-PHB module, which combines input Queue with each PHB queue, is implemented to utilize the resources efficiently. It employs the Priority-iSLIP scheduling algorithm to support high-speed switching. We have designed and verified the new and fast hardware architecture of VOQ-PHB and the traffic conditioner for QoS and high-speed switching using NS-2 simulator. In addition, the proposed architecture is modeled in VHDL, synthesized and verified by the VSS analyzer from SYNOPSYS. Finally, to justify the validity of the hardware architecture, the proposed architecture is placed and routed using Apollo tool.

Optical Pattern Switching in Semiconductor Microresonators as All-Optical Switch

  • Kheradmand, Reza;Dastmalchi, Babak
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.593-597
    • /
    • 2009
  • In this paper, we present a spatial perturbation method to control the optical patterns in semiconductor microresonators in the far-field configuration. We propose a fast all-optical switch which operates at a low light level. The switching beam controls the behavior of output beams with strong intensities. The method has been applied successfully to different optical patterns such as rolls, squares, and hexagons.

Traction IGBT Modules Design Issues and Precautions (전철용 IGBT 모듈 설계연구)

  • Gopal, Devarajan;Lho, Young-Hwan;Kim, Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1853-1859
    • /
    • 2008
  • IGBT modules are designed for low loss, rugged for all environments and user friendly. Low on state saturation voltage with high switching speed is the primary concerns. In this paper selection of IGBT, module ratings and characteristics are discussed. The IGBT design topic of protection against over voltage and over current are covered. Emphasis on turn off switching, short circuit switching and necessary precautions are dealt. Selection of IGBT device, gate drive power, and its lay out considerations are covered in detail.

  • PDF

Mixed-mode simulation of switching characteristics of SiC DMOSFETs (Mixed-mode 시뮬레이션을 이용한 SiC DMOSFET의 스위칭 특성 분석)

  • Kang, Min-Seok;Choi, Chang-Yong;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.37-38
    • /
    • 2009
  • SiC power device possesses attractive features, such as high breakdown voltage, high-speed switching capability, and high temperature operation. In general, device design has a significant effect on the switching characteristics. It is known that in SiC power MOSFET, the JFET region width is one of the most important parameters. In this paper, we demonstrated that the switching performance of DMOSFET is dependent on the with width of the JFET region by using 2-D Mixed-mode simulations. The 4H-SiC DMOSFETs with a JFET region designed to block 800 V were optimized for minimum loss by adjusting the parameters of the n JFET region, CSL, and n-drift layer. It has been found that the JFET region reduces specific on-resistance and therefore the switching characteristics depend on the JFET region.

  • PDF