• Title/Summary/Keyword: high speed PWM control

Search Result 213, Processing Time 0.045 seconds

Field Weakening Control of IPMSM for High Speed Operation (영구자석 동기전동기의 약계자제어에 의한 고속 운전)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Choon-Sam;Lee, Byung-Song;Kim, Soo-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.588-590
    • /
    • 1994
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. The IPM synchronous motors have a saliency, in which the q-axis inductance is larger than the d-axis inductance. As a consequence, there exists a reluctance torque component Thus when this component is added to the torque component produced by the stator currents and the air-gap flux, IPM motor drives are readily applicable where full torque Is required up to full or base speed. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. The wide variety of speed control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system. Simulation results are given and discussed.

  • PDF

Combined test of Power Supply System for Korean High Speed Train (고속전철용 보조전원장치 시스템 조합시험)

  • Cho, Hyun-Wook;Kim, Yuen-Chung;Kim, Tae-Hwan;Jang, Kyung-Hyun;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.619-625
    • /
    • 2008
  • Electrical Power supply System conditions of korea high speed train consists of main transformer, four AC-DC PWM converter of Auxiliary Block, Battery Charger in Power Car and Trailer Car, Trailer Inverter, Auxiliary inverter. Main transformer, at nominal voltage of 25kv supplied to secondary winding nominal output Voltage 383Vac, The Auxiliary block consists of AC-DC converters for generating 670VDC power, Auxiliary inverters for ventilation and air compressor, Trailer car inverter provide three phase power supplies at 440Vac for air conditioning and heating. The Battery charger Trailer and Power car supplies 72VDC all necessary equipment to energize the trainset equipment and suppy essential control. This Paper introduces the combined test results of the power supply system for korea high speed train. The main purpose of this combined test is to verify the performance of the power supply system that is designed to operate up to full load test.

  • PDF

three phase current reconstruction method applying predictive current in three shunt sensing PWM inverter (예측 전류를 적용한 3 션트 PWM 인버터의 전류 복원 기법)

  • Hong, Sung-Woo;Kim, Do-Yun;Won, Il-Kuen;Kim, Young-Real;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.99-100
    • /
    • 2016
  • In a AC motor used by three phase inverter, the phase current must be measured to control instantaneous torque. It is expensive to use current sensor for measuring current in low cost motor. So, shunt resistor is used to measure current. But, the method sensing the phase current using shunt resistor cannot perform the vector control in high speed because of the area that impossible to restore three phase current. In this paper, predictive current is proposed for reconstructing the current in the impossible current sensing area that reduce the current ripple in TSSI(Three shunt sensing inverter) for PMSM.

  • PDF

The Design of a Position Controller for the Linear Brushless D.C. Motor Using New Auto-tuning PI control Method (새로운 Auto-Tuning PI 제어 방법을 이용한 선형 추진 브러시리스 직류 전동기에 대한 위치 제어기 설계)

  • 최중경;박승엽;전인효
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1121-1124
    • /
    • 1999
  • Linear motor is able to produce line movement without rotary-to-line converter at the system required line moving. Thus Linear motor has no gear, screw, belt for line movement. Therefore it has some advantage which decrease friction loss, noise, vibration, maintenance effort and prevent decay of control performance due to backlash. This paper proposes the estimation method of unknown parameters from the BLDC Linear motor and determine the PI controller gain through this estimation. Each control movement that is current, speed, position control, and PWM wave generation is performed on Processor, which is DSP(Digital Signal Processor), having high speed performance. PI theory is adopted to each for controller for control behavior More fast convergence to command position is accomplished by applying the new velocity locus which derived from position error.

  • PDF

Development and Performance Characteristic of Propulsion System (Converter/Inverter) for 120km/h AC Electric Vehicle (120km/h급 교류 전동차용 추진제어장치(Converter/Inverter) 개발 및 성능 특성)

  • Kim, Tae-Yun;Kno, Ae-Sook;Kim, Myung-Ryong;Baik, Kwang-Sun;Lee, Sang-Jun;Choi, Jong-Mook
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1214-1221
    • /
    • 2006
  • In this paper, development and performance characteristic of propulsion system(Converter/Inverter) using IPM(Intelligent Power Module) for 120km/h AC electric vehicle is proposed. The proposed propulsion system is comprised of IPM converter and inverter stack which uses natural air-cooling system, DC-Link, OVCRf unit and control unit. And also 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by main line test results as well as combined test results.

  • PDF

Simulator for 3 Phase Induction Motor with LCL Filter and PWM Rectifier (LCL 필터와 PWM 정류기를 이용한 3상 유도전동기의 시뮬레이터)

  • Cho, Kwan Yuhl;Kim, Hag Wone
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.861-869
    • /
    • 2020
  • A dynamo set for a high-power induction motor drive is expensive and needs a long time to manufacture. Therefore, the development of a simulator that functions as the induction motor and load equipment is required. A load simulator of an inverter for a high-power three-phase induction motor consists of a reactor and three-phase PWM inverter. Therefore, it cannot simulate the dynamic characteristics of an induction motor and functions only as a load. In this paper, a real-time simulator is proposed to simulate a model of an induction motor and the load characteristics based on an LCL filter and three-phase PWM rectifier for a three-phase induction motor. The currents of a PWM inverter that simulate the stator currents of the motor are controlled by the inductor currents and capacitor voltages of the LCL filter. The capacitor voltages of the LCL filter simulate the induced voltages in the stator windings by the rotating rotor fluxes of the motor, and the capacitor voltages are controlled by the inductor currents and a PWM rectifier. The rotor currents, the stator and rotor flux linkages, the electromagnetic torque, the slip frequency, and the rotor speed are derived from the inverter currents and the motor parameters. The electrical and mechanical model characteristics and the operation of vector control were verified by MATLAB/Simulink simulation.

Design of Fuzzy Control for High Performance of Induduction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 퍼지제어기의 설계)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1179-1181
    • /
    • 2001
  • For high performance induction motor drives such as mill drives, elevator, spindle drive, NC and so on, smart speed controls is usually required, that requires a precise current control. This paper is proposes design of fuzzy controller which makes use of the output voltage of the space vector PWM inverter. Also, proposes the performance fuzzy controller for high performance vector control of induction motor drive system. The performance of a fuzzy controller is compared with that of an PI controller in an internal loop. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

Single-Chip Controller Design for Piezoelectric Actuators using FPGA (FPGA를 이용한 압전소자 작동기용 단일칩 제어기 설계)

  • Yoon, Min-Ho;Park, Jungkeun;Kang, Taesam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.513-518
    • /
    • 2016
  • The piezoelectric actuating device is known for its large power density and simple structure. It can generate a larger force than a conventional actuator and has also wide bandwidth with fast response in a compact size. To control the piezoelectric actuator, we need an analog signal conditioning circuit as well as digital microcontrollers. Conventional microcontrollers are not equipped with an analog part and need digital-to-analog converters, which makes the system bulky compared with the small size of piezoelectric devices. To overcome these weaknesses, we are developing a single-chip controller that can handle analog and digital signals simultaneously using mixed-signal FPGA technology. This gives more flexibility than traditional fixed-function microcontrollers, and the control speed can be increased greatly due to the parallel processing characteristics of the FPGA. In this paper, we developed a floating-point multiplier, PWM generator, 80-kHz power control loop, and 1-kHz position feedback control loop using a single mixed-signal FPGA. It takes only 50 ns for single floating-point multiplication. The PWM generator gives two outputs to control the charging and discharging of the high-voltage output capacitor. Through experimentation and simulation, it is demonstrated that the designed control loops work properly in a real environment.

A Study on the Wheel Slip Protection for Korean High-Speed Railway Train (고속전철의 Wheel Slip Protection에 관한 연구)

  • Kim, M.S.;Hwang, D.H.;Kim, J.S.;Ryoo, H.J.;Jeon, J.W.;Kim, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.420-422
    • /
    • 1999
  • To improve traction effort performance and stability of Korean High-Speed Railway Train, a practical re-adhesion controller including a novel wheel slip protection control scheme is proposed. The presented method is verified by various train running simulations by induction motor vector control with PWM inverter.

  • PDF