• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.028 seconds

Verification of a tree canopy model and an example of its application in wind environment optimization

  • Yang, Yi;Xie, Zhuangning;Tse, Tim K.T.;Jin, Xinyang;Gu, Ming
    • Wind and Structures
    • /
    • v.15 no.5
    • /
    • pp.409-421
    • /
    • 2012
  • In this paper, the method of introducing additional source/sink terms in the turbulence and momentum transport equations was applied to appropriately model the effect of the tree canopy. At first, the new additional source term for the turbulence frequency ${\omega}$ equation in the SST k-${\omega}$ model was proposed through theoretical analogy. Then the new source/sink term model for the SST k-${\omega}$ model was numerically verified. At last, the proposed source term model was adopted in the wind environment optimal design of the twin high-rise buildings of CABR (China Academy of Building Research). Based on the numerical simulations, the technical measure to ameliorate the wind environment was proposed. Using the new inflow boundary conditions developed in the previous studies, it was concluded that the theoretically reasonable source term model of the SST k-${\omega}$ model was applicable for modeling the tree canopy flow and accurate numerical results are obtained.

Acceptable Supply Air Conditions of Dedicated Outdoor Air System for a High-rise Apartment Building (초고층 공동주택 외기전담 시스템 기반 중앙 공급식 환기시스템의 적정 급기조건 설정)

  • Kim, Min-Hwi;Kim, Jin-Hyo;Kwon, Oh-Hyun;Jeong, Jae-Weon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.285-290
    • /
    • 2009
  • The main thrust of this paper is to investigate acceptable supply air conditions of a dedicated outdoor air system (DOAS) for highrise apartment buildings. As for a typical $132-m^2$ apartment unit, it was assumed that centralized DOAS-Ceiling Radiant Cooling Panel was installed. Transient behavior and control characteristics of each system were modeled numerically using a commercial equation solver program. The optimized dew point temperature of the DOAS was discussed on the basis of the ASHRAE standard 62.1-2007 and the current Korean ventilation standard for apartments. It was found that the optimized dew point temperature of the DOAS supply air accommodating total latent load of a space is $11-12^{\circ}C$ and the appropriate supply air temperature of the DOAS is $11-12^{\circ}C$ in cooling period and neutral temperature of $18-20^{\circ}C$ in intermediate period.

  • PDF

The self-compacting property of concrete as to specific gravity and mixing proportion of lightweight coarse aggregate (경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook;Lee, Sang-Ho;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied. to . structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific design mix method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the design mix method of high performance self-compacting concrete for the lightweight concrete. Therefore, this study introduces a production of self-compacting concrete, PF-modified and improved version of Nan-Su's design mix method of self-compacting concrete. Through a series of test mixes conducted during the study, the quality of the concrete at its fresh condition has been evaluated per the 2nd class rating standards of self-compacting concrete published by JSCE, especially focused in its fluidity, segregation resistance ability, and filling ability.

  • PDF

A Systematic Categorization of Interior Environmental Design Elements for Improving Sustainability - With Particular Reference to Unit Plan Design Elements of High-rise Apartment - (지속가능한 실내환경디자인 요소의 체계적 분류 - 초고층 아파트 단위 주공간의 디자인요소를 중심으로 -)

  • Lee Eun-Jung;Park Young-Ki
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.3 s.56
    • /
    • pp.48-55
    • /
    • 2006
  • A sustainable building must produce an interior environment that is safe, healthy, comfortable and supportive of human performance and well-being. The medical human comfort: performance and productivity cost of unhealthy environment may cause much cost for healing. Research that buildings with daylight, fresh air, eco-materials and sustainable interior design are consistently rated as more comfortable and occupants performance, satisfaction and health. This study is to categorize systematically interior environmental design elements for improving sustainability with a view to developing an evaluation model of super high-rise apartment unit plans. With a literature survey and design guide lines concerning sustainable design elements, three hierarchical categorization levels of human, environment, energy and resources systems that consists of upper, middle, low design elements have been proposed. A total of 6 items have been suggested for middle level of categorization and 24 items for lower level. Finally a total of 107 design elements concerning the 24 items and their relationahips have been revealed. The needs for a systematic approach to interior environmental design for sustainability have been discussed.

Efficient dynamic analysis of shear wall building structures with various types of openings (다양한 형태의 개구부를 가진 전단벽식 구조물의 효율적 인 동적 해석)

  • 김현수;이승재;이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.329-336
    • /
    • 2003
  • The box system that is composed only of reinforced concrete walls and slabs are adopted on many high-rise apartment buildings recently constructed in Korea. And the framed structure with shear wall core that can effectively resist horizontal forces is frequently adopted for the structural system for high-rise building structures. In these structures, a shear wall may have one or more openings for functional reasons. It is necessary to use subdivided finite elements for accurate analysis of the shear wall with openings. But it would take significant amount of computational time and memory if the entire building structure is subdivided into a finer mesh. An efficient analysis method that can be used regardless of the number, size and location of openings is proposed in this study. The analysis method uses super element, substructure, matrix condensation technique and fictitious beam technique. Three-dimensional analyses of the box system and the framed structure with shear wall core having various types of openings were peformed to verify the efficiency of the proposed method. It was confirmed that the proposed method have outstanding accuracy with drastically reduced time and computer memory from the analyses of example structures.

  • PDF

Study of Comparison on Energy Consumption Based on HVAC area along Floor in High Rise Building (고층빌딩의 층별 에너지 사용량 비교에 관한 연구)

  • Park, Woo-Pyeng;Choi, Byong-Jeong;Kim, Jin-Ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • In this study, the energy consumption of the typical floor was compared by the total energy comsumption of the building in highrise building. In gerneral, many researchers are studying on the typical floor in highrise buildings for avoiding complexity in energy simulation. But few papers are studied on energy consumption along the floors. In the model bulding, the energy consumption data were acquired by BEMS system in 2011. According the data, the total net energy consumption was $193.99kWh/m^2$ for all area and the total net energy consumption was $247.61kWh/m^2$ for HVACR area. The total electricity and gas energy are used 47.7% for heating and cooling, 33.5% for lighting and plug, 12.9% for conveyance power and 5.9% for restaurant. In comparison of only ground floor, amount of energy consumption in the lobby is 10%, and 90% of total energy consumption is used in the typical floor. For this result, energy simulation on the typical floor is acceptable for calculating the total energy consumption in the highrise building.

Seismic control of concrete buildings with nonlinear behavior, considering soil structure interaction using AMD and TMD

  • Mortezaie, Hamid;Zamanian, Reza
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.721-734
    • /
    • 2021
  • The seismic analysis of structures without applying the effects of soil can undermine functional objectives of structure so that it can affect all the desired purposes at the design and control stages of the structure. In this research, employing OpenSees and MATLAB software simultaneously and developing a definite three-dimensional finite element model of a high-rise concrete structure, designed using performance-based plastic design approach, the performance of Tuned Mass Damper (TMD) and Active Mass Damper (AMD) is both examined and compared. Moreover some less noted aspects such as nonlinear interaction of soil and structure, uplift, nonlinear behavior of structure and structural torsion have received more attention. For this purpose, the analysis of time history on the structural model has been performed under 22 far-field accelerogram records. Examining a full range of all structural seismic responses, including lateral displacement, acceleration, inter-story drift, lost plastic energy, number of plastic hinges, story shear force and uplift. The results indicate that TMD performs better than AMD except for lateral displacement and inter-story drift to control other structural responses. Because on the one hand, nonlinear structural parameters and soil-structure interaction have been added and on the other hand, the restriction on the control force applied that leads up to saturation phenomenon in the active control system affect the performance of AMD. Moreover, the control force applied by structural control system has created undesirable acceleration and shear force in the structure.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.

A novel multi-feature model predictive control framework for seismically excited high-rise buildings

  • Katebi, Javad;Rad, Afshin Bahrami;Zand, Javad Palizvan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.4
    • /
    • pp.537-549
    • /
    • 2022
  • In this paper, a novel multi-feature model predictive control (MPC) framework with real-time and adaptive performances is proposed for intelligent structural control in which some drawbacks of the algorithm including, complex control rule and non-optimality, are alleviated. Hence, Linear Programming (LP) is utilized to simplify the resulted control rule. Afterward, the Whale Optimization Algorithm (WOA) is applied to the optimal and adaptive tuning of the LP weights independently at each time step. The stochastic control rule is also achieved using Kalman Filter (KF) to handle noisy measurements. The Extreme Learning Machine (ELM) is then adopted to develop a data-driven and real-time control algorithm. The efficiency of the developed algorithm is then demonstrated by numerical simulation of a twenty-story high-rise benchmark building subjected to earthquake excitations. The competency of the proposed method is proven from the aspects of optimality, stochasticity, and adaptivity compared to the KF-based MPC (KMPC) and constrained MPC (CMPC) algorithms in vibration suppression of building structures. The average value for performance indices in the near-field and far-field (El earthquakes demonstrates a reduction up to 38.3% and 32.5% compared with KMPC and CMPC, respectively.

Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings

  • Ailin, Zhang;Shi, Zhang;Xiaoda, Xu;Yi, Hui;Giuseppe, Piccardo
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.369-383
    • /
    • 2022
  • Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.