• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.025 seconds

Analysis of Seismic Response According to Installation Location of Seismic Isolation System Applied to High-Rise Building (고층 건물에 적용한 면진 시스템의 설치 위치에 따른 지진 응답 분석)

  • Kim, Min-Ju;Kim, Dong-Uk;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.81-88
    • /
    • 2018
  • Seismic isolation systems have typically been used in the form of base seams in mid-rise and low-rise buildings. In the case of high-rise buildings, it is difficult to apply the base isolation. In this study, the seismic response was analyzed by changing the installation position of the seismic isolation device in 3D high - rise model. To do this, we used 30-story and 40-story 3D buildings as example structures. Historic earthquakes such as Mexico (1985), Northridge (1994) and Rome Frieta (1989) were applied as earthquake loads. The installation position of the isolation device was changed from floor to floor to floor. The maximum deformation of the seismic isolation system was analyzed and the maximum interlaminar strain and maximum absolute acceleration were analyzed by comparing the LB model with seismic isolation device and the Fixed model, which is the base model without seismic isolation device. If an isolation device is installed on the lower layer, it is most effective in response reduction, but since the structure may become unstable, it is effective to apply it to an effective high-level part. Therefore, engineers must consider both structural efficiency and safety when designing a mid-level isolation system for high-rise buildings.

Investigation of Typhoon Wind Speed Records on Top of a Group of Buildings

  • Liu, Min;Hui, Yi;Li, Zhengnong;Yuan, Ding
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.313-324
    • /
    • 2019
  • This paper presents the analysis of wind speeds data measured on top of three neighboring high-rise buildings close to a beach in Xiamen city, China, during Typhoon "Usagi" 2013. Wind tunnel simulation was carried out to validate the field measurement results. Turbulence intensity, turbulence integral scale, power spectrum and cross correlation of recorded wind speed were studied in details. The low frequency trend component of the typhoon speed was also discussed. The field measurement results show turbulence intensity has strong dependence to the wind speed, upwind terrain and even the relative location to the Typhoon center. The low frequency fluctuation could severely affect the characteristics of wind. Cross correlation of the measured wind speeds on different buildings also showed some dependence on the upwind terrain roughness. After typhoon made landfall, the spatial correlation of wind speeds became weak with the coherence attenuating quickly in frequency domain.

The Ropeless Elevator: New Transportation System for High-rise Buildings (and Beyond)

  • Belmonte, Martina;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • The paper reports the result of a 2-year long research conducted by CTBUH on the design possibilities enabled by the Ropeless and Multidirectional elevator systems, investigating how such a significant innovation (or better to say revolution) in the vertical transportation could affect tall buildings first and cities then. The purpose of the study is to prefigure the adoption of ropeless and multidirectional cabins for tall buildings mobility, with the aim to overcome the evolutionary bottleneck of the high-rise building type due to the exclusively vertical direction of transport, which limited, over the years, the design possibilities in terms of height, shape and relations with the surrounding environment. CTBUH research team, together with professionals in the field and supporting academic advisors, developed a series of design considerations on plan organizations, dispatching alternatives and on the integration of horizontal direction in the circulation, with the aim of anticipating potential and criticality arising from the application of ropeless and multidirectional systems.

Diagrid Structural System for High-Rise Buildings: Applications of a Simple Stiffness-based Optimized Design

  • Gerasimidis, Simos;Pantidis, Panos;Knickle, Brendan;Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.319-326
    • /
    • 2016
  • The ingenuity of structural engineers in the field of tall and super-tall buildings has led to some of the most remarkable inventions. During this evolution of structural engineering concepts in the last 100 years, the technical challenges that engineers encountered were extraordinary and the advances were unprecedented. However, as the accomplishments of structural engineers are progressing, the desire for taller and safer structures is also increasing. The diagrid structural system is part of this evolving process as it develops a new paradigm for tall building design combining engineering efficiency and new architectural expression. The first appearances of this type of tall buildings have already been constructed and the interest of both engineering and architectural communities is growing mainly due to the many advantages compared to other structural systems. This paper presents a simple approach on optimizing member sizes for the diagonals of steel diagrid tall buildings. The optimizing method is based on minimizing the volume of the diagonal elements of a diagrid structure. The constraints are coming from the stiffness-based design, limiting the tip deflection of the building to widely accepted regulative limits. In addition, the current paper attempts to open the discussion on the important topic of optimization and robustness for tall buildings and also studies the future of the diagrid structural system.

A Study on the Core Characteristics of Irregular-Shaped High-rise Buildings (비정형 초고층건물의 코어 특성에 관한 연구)

  • Jang, In-Sun;Im, Ja-Eun;Park, Sang-Min
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.13-24
    • /
    • 2019
  • The history of tall buildings begins in 1853with the development of elevators. After the Industrial Revolution of the 18th century, the development of high-rise buildings will be carried out in earnest as a means to efficiently use the limited land of cities. The development, which began around Chicago, extended over a long period of time to Asia, maximizing the high competition. However, in the 2000s, not only was it high due to the development of construction and digital technology, but it also became competitive in eco-friendly elements and unstructured forms. High-rise building plans that have gained elemental and morphological diversity are completed by the interrelationships of various plans. Among them, it is important that the core plan has a reasonable approach from the initial planning stage as the basis for the vertical copper plan linking vertically-intensive functions. The cores should be designed to be clear and adequately responsive to changes in the shape of the building. This study aims to provide designers with a reasonable understanding of core planning by identifying core characteristics of irregular high-rise. In particular, we want to analyze the shape of the ground layer core and the relationship between the area and components of the ground layer core. The analysis results are as follows, classified according to the type or use of the building. Of the atypical forms composed of double bending, the TAPER-Curve and TWIST forms are the most distributed, and the plane and core shapes of the ground floor are the most commonly used. Based on the analysis of the validity of the ground floor cores by shape of the cores, the most commonly used forms for core shapes in the planning of the atypical high-rise are square, circular and Oval, and the most efficient oval cores and relatively inefficient ones when planned.

An Analysis of Item Factors for Preliminary Survey of Job Satisfaction of General Disaster Manager in High-rise and Underground-linked Complex Buildings (초고층 및 지하연계 복합건축물 등에서 총괄재난관리자의 직무만족도 예비조사를 위한 항목요인 분석)

  • Jong Bueom Kim;Min Kyun Eun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.47-56
    • /
    • 2022
  • Along with high-rise buildings, complex buildings used by many unspecified people, such as various buildings and underground-linked buildings, are increasing. In particular, high-rise buildings are accompanied by a number of casualties and a lot of property damage in the event of a disaster, so reinforced integrated disaster management is necessary. The High-Rise Disaster Management Act stipulates that a general disaster manager is appointed and requires stricter safety management tasks than other buildings. Therefore, this study aims to analyze and present item factors for a preliminary survey of job satisfaction of general disaster managers through literature research and expert verification.

A Study on the Development of Lightweight Wall for Sound Transmission Loss and Field Test Results of the Dry-Wall System (차음성능이 향상된 경량벽체 개발 및 성능평가 연구)

  • 이병권;배상환;홍천화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.699-704
    • /
    • 2004
  • As being inconvenient to apply reinforced concrete structure to high-rise buildings, it is applied steel structured system. Therefore light-weight wall systems are applied as partition wall to reduce the self-load of the building. But, the required performances of a light-weight wall are not evaluated systematically. As a field survey result, partition walls of house-to-house were not showed their respected performances, so the dwellers are feel so worse the quality of the whole building. In steel-structured high-rise buildings especially, occupant's dissatisfaction concerned indoor noise was high because curtain wall systems having a high air-tight performance isolate the outdoor noise making masking effect. Therefore wall systems which have high performances of sound insulation and air-tightness are required in high-rise buildings. As a result, a new drywall system was presented and the performance was verified with field test.

  • PDF

A Development of Partition Wall for enhenced Sound Transmission Loss and Air Tightness (차음성능과 기밀성능이 향상된 경량 간막이벽 개발)

  • 배상환;박진우;홍천화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.855-860
    • /
    • 2001
  • As being inconvenient to apply reinforced concrete structure to high-rise buildings. it is applied steel structured system. Therefore light-weight wall systems are applied as partition wall to reduce the self-load of the building. But. the required performances of a light-weight wall are not evaluated systematically. As a field survey result. partition walls of house-to-house and room-to-room were not showed their respected performances. so the dwellers are feel so worse the quality of the whole building. In steel-structured high-rise buildings especially. occupant's dissatisfaction concerned indoor noise was high because curtain wall systems having a high air-tight performance isolate the outdoor noise making masking effect. Also to suppress indoor air movement. stact effect must be concerned. Therefore wall systems which have high performances of sound insulation and air-tightness are required in high-rise buildings.

  • PDF

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.

Non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings with different side ratios

  • Jia-hui Yuan;Shui-fu Chen;Yi Liu
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.211-227
    • /
    • 2023
  • To investigate the non-Gaussian feature of fluctuating wind pressures on rectangular high-rise buildings, wind tunnel tests were conducted on scale models with side ratios ranging from 1/9~9 in an open exposure for various wind directions. The high-order statistical moments, time histories, probability density distributions, and peak factors of pressure fluctuations are analyzed. The mixed normal-Weibull distribution, Gumbel-Weibull distribution, and lognormal-Weibull distribution are adopted to fit the probability density distribution of different non-Gaussian wind pressures. Zones of Gaussian and non-Gaussian are classified for rectangular buildings with various side ratios. The results indicate that on the side wall, the non-Gaussian wind pressures are related to the distance from the leading edge. Apart from the non-Gaussianity in the separated flow regions noted by some literature, wind pressures behind the area where reattachment happens present non-Gaussian nature as well. There is a new probability density distribution type of non-Gaussian wind pressure which has both long positive and negative tail found behind the reattachment regions. The correlation coefficient of wind pressures is proved to reflect the non-Gaussianity and a new method to estimate the mean reattachment length of rectangular high-rise building side wall is proposed by evaluating the correlation coefficient. For rectangular high-rise buildings, the mean reattachment length calculated by the correlation coefficient method along the height changes in a parabolic shape. Distributions of Gaussian and non-Gaussian wind pressures vary with side ratios. It is inappropriate to estimate the extreme loads of wind pressures using a fixed peak factor. The trend of the peak factor with side ratios on different walls is given.