• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.027 seconds

A Study on security characteristics and vulnerabilities of BAS(Building Automation System) (BAS의 보안 특성 및 취약점에 관한 연구)

  • Choi, Yeon-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.669-676
    • /
    • 2017
  • Recently, due to the importance of information security, security vulnerability analysis and various information protection technologies and security systems are being introduced as a countermeasure against cyber-attacks in new as well as existing buildings, and information security studies on high-rise buildings are also being conducted. However, security system introduction and research are generally performed from the viewpoint of general IT systems and security policies, so there is little consideration of the infrastructure of the building. In particular, the BAS or building infrastructure, is a closed system, unlike typical IT systems, but has unique structural features that accommodate open functions. Insufficient understanding of these system structures and functions when establishing a building security policy makes the information security policies for the BAS vulnerable and increases the likelihood that all of the components of the building will be exposed to malicious cyber-attacks via the BAS. In this paper, we propose an architecture reference model that integrates three different levels of BAS structure (from?) different vendors. The architectures derived from this study and the security characteristics and vulnerabilities at each level will contribute to the establishment of security policies that reflect the characteristics of the BAS and the improvement of the safety management of buildings.

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Seismic assessment of transfer plate high rise buildings

  • Su, R.K.L.;Chandler, A.M.;Li, J.H.;Lam, N.T.K.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.3
    • /
    • pp.287-306
    • /
    • 2002
  • The assessment of structural performance of transfer structures under potential seismic actions is presented. Various seismic assessment methodologies are used, with particular emphasis on the accurate modelling of the higher mode effects and the potential development of a soft storey effect in the mega-columns below the transfer plate (TP) level. Those methods include response spectrum analysis (RSA), manual calculation, pushover analysis (POA) and equivalent static load analysis (ESA). The capabilities and limitations of each method are highlighted. The paper aims, firstly, to determine the appropriate seismic assessment methodology for transfer structures using these different approaches, all of which can be undertaken with the resources generally available in a design office. Secondly, the paper highlights and discusses factors influencing the response behaviour of transfer structures, and finally provides a general indication of their seismic vulnerability. The representative Hong Kong building considered in this paper utilises a structural system with coupled shear walls and moment resisting portal-frames, above and below the TP, respectively. By adopting the wind load profile stipulated in the Code of Practice on Wind Effects: Hong Kong-1983, all the structural members are sized and detailed according to the British Standards BS8110 and the current local practices. The seismic displacement demand for the structure, when built on either rock or deep soil sites, was determined in a companion paper. The lateral load-displacement characteristic of the building, determined herein from manual calculation, has indicated that the poor ductility (brittle nature) of the mega-columns, due mainly to the high level of axial pre-compression as found from the analysis, cannot be effectively alleviated solely by increasing the quantity of confinement stirrups. The interstorey drift demands at lower and upper zones caused by seismic actions are found to be substantially higher than those arising from wind loads. The mega-columns supporting the TP and the coupling beams at higher zones are identified to be the most vulnerable components under seismic actions.

Average Correction for Compensation of Differential Column Shortening in High-rise Buildings (이동 평균법을 이용한 고층 건물의 부등축소량 보정 기법)

  • Park, Sung-Woo;Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • The vertical members of structures are shortened as time goes on. Because structures have been high-rising and atypical there should be different axial loads among vertical members and it causes differential column shortenings. The differential column shortening add stresses to connections, make slab tilt, and damage to non-structural components. To reduce these influences compensation is need. The rational compensation means the exact expectation of amounts of column shortenings and the reasonable corrections. The expectation of column shortenings are more exact as researched, however, there is little research about the compensation. This paper presents the average correction method and the constraints for differential column shortenings considering errors due to the construction precision. The relations between constraints and the number of correction groups give an objective criterion for decision of constraints.

A Study on the Development of Force Limiting Devices of Folded Plate Type (절판형 응력제한 기구의 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.571-579
    • /
    • 2014
  • The steel braces are used to control the lateral drift of high rise buildings. The braces are designed as tensile members since the braces consisted of slender member can not resist compressive loads by elastic buckling. To resolve this problem, a lot of research were performed to develop the non-buckling member. The force limiting device (FLD.) is one of them. The purpose of this study is the development of FLD. to prevent a elastic buckling for a slender member. The folded plate type is proposed to induce the yielding before occurring elastic buckling. In this study, member test and FEM analysis for proposed type were performed. Further, It is verified that the structure with FLD member is stable by high energy absorption. The proposed folded plate type FLD could be effective to preserve the compressive member from the elastic buckling.

The Characteristics of Korean Costume Colors and the Interpretation from the Perspective of Cultural Semiotics(1) (한국복식의 색채특성과 문화기호적 해석에 관한 연구[1])

  • Lee Jee-Hyun;Kim Young-In
    • Journal of the Korean Society of Costume
    • /
    • v.56 no.2 s.101
    • /
    • pp.56-69
    • /
    • 2006
  • The purpose of this study was to analyze the characteristics of Korean costume colors according to the diachronic stages of culture(Chosun dynasty, Modern times, Present age) and to interpretate the meanings of costume colors as a cultural code. To examine the color characteristics according to the cultural change, the quantitative analysis and the qualitative analysis were used. For the quantitative analysis 1535 color samples were collected and for the qualitative analysis on the sensitive aspect of Korean costume color, 340 color names were collected. The results of this study as follows; 1.'Red' and 'Blue' were preferred throughout the periods. In Chosun dynasty, the higher saturation of 'Red' and 'Blue', its symbolic meanings were more emphasized. 2. In the Modern times, 'Pink' was more distinctive than 'Red'. 'Pink' meant that the ecdysis of the traditional view of color. 3.'Yellow' of the low Saturation was used frequently in Chosun dynasty but in the Modern times, the use of 'Yellow' increased and the high saturation were used. In the Present age, the frequency of 'Yellow' was reduced relating to the increasing use of 'Brown'. 4.'Neutral Color' has changed according to the diachronic stages of the culture. 'Black' was increased and had a big meaning in the cultural aspect of the Modern times. In the Present age, 'Gray' and 'grayish colors' were increased related to Technology, Metals and High rise buildings.

Indoor Illuminance Evaluation on a Mirror Sunlighting System Applied to the Apartments under Real Sky Condition (거울형 태양광 채광시스템의 실제 건축물 적용에 따른 실내주광조도 평가)

  • Jung, Joo Hee;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.137-145
    • /
    • 2010
  • Active sunlighting systems have been applied to deliver sunlight into the indoor space where natural light is insufficient, mainly because of the congested high-rise buildings in urban areas. Among various active sunlighting systems, a mirror sunlighting system which is simple structure and economically reasonable has been widely used in different types of spaces such as underground, north facing place and atrium. This study was to evaluate the mirror sunlighting systems, which were consisted of the first mirror of $3.5m{\times}2.5m$, the eight sets of the second mirrors of $1.0m{\times}1.25m$ and a sun tracker. Ten sets of the systems were installed for 40 apartment living rooms, the configuration of $3.5m(W){\times}4.0m(D){\times}2.5m(H)$ where sunlighting were not possible due to high retaining walls located in the front of the living rooms. The 45 HOBO data logger sensors for the indoor illuminance were equipped and 2 Li-cor photometers for outdoor illuminance. Both indoor and outdoor horizontal illuminances were monitored every second from 9am to 3pm on 17 January 2010 under clear sky condition. The results showed that the indoor illuminance of installed mirror sunlighting system was significant relationship with outdoor illuminance and increased the indoor illuminance level by 4.2 times on the whole floor space, by 8 times on the sun patch space of 6m2 and even by 2 times on the no sun patch space. In addition, the luminous conditions of the living room under real sky conditions met the KS recommendation for difficult task (600-1000-1500 lux) such as sewing and reading on whole floor space and sun patch space. It was proved that the benefits of mirror sunlighting systems included an effective technology for penetrating daylight into indoors where sunlighting was not possible and improving occupants' satisfaction and health, and contributing to energy saving in apartments during daytime.

Development of MEMS Inclinometer Sensor System (MEMS형 경사계 센서의 유효성 평가)

  • Ha, Dae Woong;Kim, Jong Moon;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.271-274
    • /
    • 2013
  • Inclinometer sensors are widely applied in many fields. Especially in the field of construction of high-rise buildings also measure the horizontal and vertical help has been applied to monitor. Recent micro electro-mechanical system(MEMS) technology with the development of the many sensors have been developed. In this paper, a MEMS inclinometer is based on a MEMS accelerometer. The sensor can measure the angle of inclination using the relationship between static acceleration and gravity acceleration from an accelerometer. From this principle, inclinometer has been developed that has more accurate. The accuracy is proved by the experiment with laser displacement. Results in the experiment express high-accuracy, stability and economics of MEMS inclinometer. In conclusion, wireless MEMS inclinometer sensor is expected to be applicable in the areas of construction and many other industries with accurate and convenient monitoring system.

A Study on the Behavior of Metal Touch Connection subject to Connection Types (이음방식 및 틈의 위치에 따른 메탈터치 이음부의 거동에 관한 연구)

  • Hong, Kap Pyo;Kim, Seok Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.661-669
    • /
    • 2004
  • In the steel structure of high-rise buildings, a connection analysisand a column design have been made after welding and bolting suitable gaps. Each country, however, has different codes, and such differences are very big. American steel has been designed according to a code that all axial loads can be carried from the upper parts to the lower parts as determined by the designer, but Korean and Japanese steel have been designed by 1/4 of the standard of all axial loads. In this paper, a metal touch experiment was done as an intermediation parameter with a connecting location and a connecting method for economic and constructive efficiency. Every specimen is tested by a low-to-high displacement control to grasp ultimate strength, displacement, the connection's lateral deflection, and stress. The results of the test were compared and analyzed.

Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building

  • Wang, Qinhua;Qiao, Haoshuai;Li, Wenji;You, Yugen;Fan, Zhun;Tiwari, Nayandeep
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.241-253
    • /
    • 2020
  • The inerter-based vibration absorber (IVA) is an enhanced variation of Tuned Mass Damper (TMD). The parametric optimization of absorbers in the previous research mainly considered only two decision variables, namely frequency ratio and damping ratio, and aimed to minimize peak displacement and acceleration individually under the excitation of the across-wind load. This paper extends these efforts by minimizing two conflicting objectives simultaneously, i.e., the extreme displacement and acceleration at the top floor, under the constraint of the physical mass. Six decision variables are optimized by adopting a constrained multi-objective evolutionary algorithm (CMOEA), i.e., NSGA-II, under fluctuating across- and along-wind loads, respectively. After obtaining a set of optimal individuals, a decision-making approach is employed to select one solution which corresponds to a Tuned Mass Damper Inerter/Tuned Inerter Damper (TMDI/TID). The optimization procedure is applied to parametric optimization of TMDI/TID installed in a 340-meter-high building under wind loads. The case study indicates that the optimally-designed TID outperforms TMDI and TMD in terms of wind-induced vibration mitigation under different wind directions, and the better results are obtained by the CMOEA than those optimized by other formulae. The optimal TID is proven to be robust against variations in the mass and damping of the host structure, and mitigation effects on acceleration responses are observed to be better than displacement control under different wind directions.