• Title/Summary/Keyword: high resolution measurement

Search Result 781, Processing Time 0.03 seconds

Detection of Urban Trees Using YOLOv5 from Aerial Images (항공영상으로부터 YOLOv5를 이용한 도심수목 탐지)

  • Park, Che-Won;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1633-1641
    • /
    • 2022
  • Urban population concentration and indiscriminate development are causing various environmental problems such as air pollution and heat island phenomena, and causing human resources to deteriorate the damage caused by natural disasters. Urban trees have been proposed as a solution to these urban problems, and actually play an important role, such as providing environmental improvement functions. Accordingly, quantitative measurement and analysis of individual trees in urban trees are required to understand the effect of trees on the urban environment. However, the complexity and diversity of urban trees have a problem of lowering the accuracy of single tree detection. Therefore, we conducted a study to effectively detect trees in Dongjak-gu using high-resolution aerial images that enable effective detection of tree objects and You Only Look Once Version 5 (YOLOv5), which showed excellent performance in object detection. Labeling guidelines for the construction of tree AI learning datasets were generated, and box annotation was performed on Dongjak-gu trees based on this. We tested various scale YOLOv5 models from the constructed dataset and adopted the optimal model to perform more efficient urban tree detection, resulting in significant results of mean Average Precision (mAP) 0.663.

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.

Multiple Reference Network Data Processing Algorithms for High Precision of Long-Baseline Kinematic Positioning by GPS/INS Integration (GPS/INS 통합에 의한 고정밀 장기선 동적 측위를 위한 다중 기준국 네트워크 데이터 처리 알고리즘)

  • Lee, Hung-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.135-143
    • /
    • 2009
  • Integrating the Global Positioning System (GPS) and Inertial Navigation System (INS) sensor technologies using the precise GPS Carrier phase measurements is a methodology that has been widely applied in those application fields requiring accurate and reliable positioning and attitude determination; ranging from 'kinematic geodesy', to mobile mapping and imaging, to precise navigation. However, such integrated system may not fulfil the demanding performance requirements when the baseline length between reference and mobil user GPS receiver is grater than a few tens of kilometers. This is because their positioning/attitude determination is still very dependent on the errors of the GPS observations, so-called "baseline dependent errors". This limitation can be remedied by the integration of GPS and INS sensors, using multiple reference stations. Hence, in order to derive the GPS distance dependent errors, this research proposes measurement processing algorithms for multiple reference stations, such as a reference station ambiguity resolution procedure using linear combination techniques, a error estimation based on Kalman filter and a error interpolation. In addition, all the algorithms are evaluated by processing real observations and results are summarized in this paper.

Characterization of TMA-A zeolite incorporated by ZnO nanocrystals (ZnO 나노결정을 담지한 TMA-A 제올라이트의 특성분석)

  • Lee, Seok Ju;Lim, Chang Sung;Kim, Ik Jin
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$ : 2.2 TEOS : 2.4 TMAOH : 0.3 NaOH : 200 $H_2O$. 0.3 g of TMA-A zeolite and 5 mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The incorporated nano-sized ZnO crystals and the crystallinity of TMA-A zeolite were evaluated by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The size of the incorporated nano-sized ZnO crystals was 3~5 nm, while the TMA-A zeolite was 60~100 nm. The bonding structure and absorption of the ZnO incorporated TMA-A zeolite were compared with the ZnO and TMA-A zeolite by the FT-IR analysis. Subsequentlly, the ZnO incorporated TMA-A zeolite showed the photoluminescent characteristics on the wavelengths of 330~260 nm and 260~230 nm by measurement of UV spectrophotometer.

Spectrum Analysis and Detection of Ships Based on Aerial Hyperspectral Remote Sensing Experiments (항공 초분광 원격탐사 실험 기반 선박 스펙트럼 분석 및 탐지)

  • Jae-Jin Park;Kyung-Ae Park;Tae-Sung Kim;Moonjin Lee
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.214-223
    • /
    • 2024
  • The recent increase in maritime traffic and coastal leisure activities has led to a rise in various marine accidents. These incidents not only result in damage to human life and property but also pose a significant risk of marine pollution involving oil and hazardous and noxious substances (HNS) spills. Therefore, effective ship monitoring is crucial for preparing and for responding to marine accidents. This study conducted an aerial experiment utilizing hyperspectral remote sensing to develop a maritime ship monitoring system. Hyperspectral aerial measurements were carried out around Gungpyeong Port in the western coastal region of the Korean Peninsula, and spectral libraries were constructed for various ship decks. The spectral correlation similarity (SCS) technique was employed for ship detection, analyzing the spatial similarity distribution between hyperspectral images and ship spectra. As a result, 15 ships were detected in the hyperspectral images. The color of each ship's deck was classified based on the highest spectral similarity. The detected ships were verified by matching them with high-resolution digital mapping camera (DMC) images. This foundational study on the application of aerial hyperspectral sensors for maritime ship detection demonstrates their potential role in future remote sensing-based ship monitoring systems.

Statistically Analyzed Effects of Coal-Fired Power Plants in West Coast on the Surface Air Pollutants over Seoul Metropolitan Area (통계적 기법을 활용한 서해안 화력발전소 오염물질 배출에 따른 수도권 지표면 대기오염농도 영향의 분석)

  • Ju, Jaemin;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.549-560
    • /
    • 2019
  • The effects of the coal-fired power plant emissions, as the biggest point source of air pollutants, on spatiotemporal surface air pollution over the remote area are investigated in this study, based on a set of date selection and statistical technique to consider meteorological and geographical effects in the emission-concentration (source-receptor) relationship. We here proposed the sophisticated technique of data processing to separate and quantify the effects. The data technique comprises a set of data selection and statistical analysis procedure that include data selection criteria depending on meteorological conditions and statistical methods such as Kolmogorov-Zurbenko filter (K-Z filter) and empirical orthogonal function (EOF) analysis. The data selection procedure is important for filtering measurement data to consider the meteorological and geographical effects on the emission-concentration relationship. Together with meteorological data from the new high resolution ECMWF reanalysis 5 (ERA5) and the Korea Meteorological Administration automated surface observing system, air pollutant emission data from the telemonitoring system (TMS) of Dangjin and Taean power plants as well as spatio-temporal air pollutant concentrations from the air quality monitoring system are used for 4 years period of 2014-2017. Since all the data used in this study have the temporal resolution of 1 hour, the first EOF mode of spatio-temporal changes in air pollutant concentrations over the Seoul metropolitan area (SMA) due to power plant emission have been analyzed to explain over 97% of total variability under favorable meteorological conditions. It is concluded that SO2, NO2, and PM10 concentrations over the SMA would be decreased by 0.468, 1.050 ppb, and 2.045 ㎍ m-3 respectively if SO2, NO2, and TSP emissions from Dangjin power plant were reduced by 10%. In the same way, the 10% emission reduction in Taean power plant emissions would cause SO2, NO2, and PM10 decreased by 0.284, 0.842 ppb, and 1.230 ㎍ m-3 over the SMA respectively. Emissions from Dangjin power plant affect air pollution over the SMA in higher amount, but with lower R value, than those of Taean under the same meteorological condition.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF

Development of tracer concentration analysis method using drone-based spatio-temporal hyperspectral image and RGB image (드론기반 시공간 초분광영상 및 RGB영상을 활용한 추적자 농도분석 기법 개발)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun;Han, Eunjin;Kwon, Siyoon;Kim, Youngdo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.623-634
    • /
    • 2022
  • Due to river maintenance projects such as the creation of hydrophilic areas around rivers and the Four Rivers Project, the flow characteristics of rivers are continuously changing, and the risk of water quality accidents due to the inflow of various pollutants is increasing. In the event of a water quality accident, it is necessary to minimize the effect on the downstream side by predicting the concentration and arrival time of pollutants in consideration of the flow characteristics of the river. In order to track the behavior of these pollutants, it is necessary to calculate the diffusion coefficient and dispersion coefficient for each section of the river. Among them, the dispersion coefficient is used to analyze the diffusion range of soluble pollutants. Existing experimental research cases for tracking the behavior of pollutants require a lot of manpower and cost, and it is difficult to obtain spatially high-resolution data due to limited equipment operation. Recently, research on tracking contaminants using RGB drones has been conducted, but RGB images also have a limitation in that spectral information is limitedly collected. In this study, to supplement the limitations of existing studies, a hyperspectral sensor was mounted on a remote sensing platform using a drone to collect temporally and spatially higher-resolution data than conventional contact measurement. Using the collected spatio-temporal hyperspectral images, the tracer concentration was calculated and the transverse dispersion coefficient was derived. It is expected that by overcoming the limitations of the drone platform through future research and upgrading the dispersion coefficient calculation technology, it will be possible to detect various pollutants leaking into the water system, and to detect changes in various water quality items and river factors.

Monitoring of Atmospheric Aerosol using GMS-5 Satellite Remote Sensing Data (GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링)

  • Lee, Kwon Ho;Kim, Jeong Eun;Kim, Young Jun;Suh, Aesuk;Ahn, Myung Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.2
    • /
    • pp.1-15
    • /
    • 2002
  • Atmospheric aerosols interact with sunlight and affect the global radiation balance that can cause climate change through direct and indirect radiative forcing. Because of the spatial and temporal uncertainty of aerosols in atmosphere, aerosol characteristics are not considered through GCMs (General Circulation Model). Therefor it is important physical and optical characteristics should be evaluated to assess climate change and radiative effect by atmospheric aerosols. In this study GMS-5 satellite data and surface measurement data were analyzed using a radiative transfer model for the Yellow Sand event of April 7~8, 2000 in order to investigate the atmospheric radiative effects of Yellow Sand aerosols, MODTRAN3 simulation results enable to inform the relation between satellite channel albedo and aerosol optical thickness(AOT). From this relation AOT was retreived from GMS-5 visible channel. The variance observations of satellite images enable remote sensing of the Yellow Sand particles. Back trajectory analysis was performed to track the air mass from the Gobi desert passing through Korean peninsular with high AOT value measured by ground based measurement. The comparison GMS-5 AOT to ground measured RSR aerosol optical depth(AOD) show that for Yellow Sand aerosols, the albedo measured over ocean surfaces can be used to obtain the aerosol optical thickness using appropriate aerosol model within an error of about 10%. In addition, LIDAR network measurements and backward trajectory model showed characteristics and appearance of Yellow Sand during Yellow Sand events. These data will be good supporting for monitoring of Yellow Sand aerosols.

  • PDF

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner (임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발)

  • Kim, Eun Ju;Kim, Daehong;Lee, Sangwoo;Heo, Dan;Lee, Young Han;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.