• Title/Summary/Keyword: high resolution DEM

Search Result 180, Processing Time 0.031 seconds

GENERATION OF GEO-SPATIAL INFORMATION USING KOMPSAT-2 IMAGERY

  • Lee, Hyun-Jik;Ru, Ji-Ho;Yu, Young-Geol;Lee, Kyu-Man
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.14-17
    • /
    • 2008
  • KOMPSAT-2 is the seventh high-resolution satellite in the world that provides both 1m panchromatic images and 4m multispectral images of the GSD. It is expected to be used across many different fields including digital mapping, territorial and environmental monitoring. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric data, such as satellite orbits and detailed mapping information. This study aims to generate the DEM and orthoimage by using the stereo images of KOMPSAT-2 and to explore the applicability of geo-spatial information with KOMPSAT-2. In order to ensure generation of DEMs of optimal accuracy, the RPCs data and a suitable number of GCPs were used. The accuracy of DEM generated in this research compared with DEM generated from 1:5,000 digital map. The mean differences between horizontal position of the orthoimage and the digital map data are found to be ${\pm}$3.1m, which is in the range of ${\pm}$3.5m, within the permitted limit of a 1:5,000 digital map. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Update of Topographic Map using QuickBird Orthoimage (Quick Bird 정사영상을 이용한 지형도 갱신)

  • 이창경;우현권;정인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.295-301
    • /
    • 2004
  • Satellite captures images periodically and economically over the area wider than aerial photographs, and reconnaissance to unapproachable area. For these advantages, mapping using high resolution satellite image has high potentials of marketability and development. Therefore, utilization of satellite image in mapping and GIS is expected to be growing and research on describable feature, positional accuracy and, possible mapping scale is urgently needed. This research presented that Quick Bird orthoimage could be used to update digital map on a scale of 1:5,000. Quick Bird image was corrected geometrically based on ground control points. DEM was generated using height data of digital topographic map. The orthoimge was produced by digital differential rectification based on DEM which was generated using height data of digital topographic map(scale 1;5,000 and 1;1,000). When the digital topographic map was overlaid with the orthoimage, it was very easy to find changed region or new features builded after the map compiled.

  • PDF

Intertidal DEM Generation Using Satellite Radar Interferometry (인공위성 레이더 간섭기술을 이용한 조간대 지형도 작성에 관한 연구)

  • Park, Jeong-Won;Choi, Jung-Hyun;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.121-128
    • /
    • 2012
  • High resolution intertidal DEM is a basic material for science research like sedimentation/erosion by ocean current, and is invaluable in a monitoring of environmental changes and practical management of coastal wetland. Since the intertidal zone changes rapidly by the inflow of fluvial debris and tide condition, remote sensing is an effective tool for observing large areas in short time. Although radar interferometry is one of the well-known techniques for generating high resolution DEM, conventional repeat-pass interferometry has difficulty on acquiring enough coherence over tidal flat due to the limited exposure time and the rapid changes in surface condition. In order to overcome these constraints, we tested the feasibility of radar interferometry using Cosmo-SkyMed tandem-like one-day data and ERS-ENVISAT cross tandem data with very short revisit period compared to the conventional repeat pass data. Small temporal baseline combined with long perpendicular baseline allowed high coherence over most of the exposed tidal flat surface in both observations. However the interferometric phases acquired from Cosmo-SkyMed data suffer from atmospheric delay and changes in soil moisture contents. The ERS-ENVISAT pair, on the other hand, provides nice phase which agree well with the real topography, because the atmospheric effect in 30-minute gap is almost same to both images so that they are cancelled out in the interferometric process. Thus, the cross interferometry with very small temporal baseline and large perpendicular baseline is one of the most reliable solutions for the intertidal DEM construction which requires very accurate mapping of the elevation.

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

Application Possibility of Control Points Extracted from Ortho Images and DTED Level 2 for High Resolution Satellite Sensor Modeling (정사영상과 DTED Level 2 자료에서 자동 추출한 지상기준점의 IKONOS 위성영상 모델링 적용 가능성 연구)

  • Lee, Tae-Yoon;Kim, Tae-Jung;Park, Wan-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2007
  • Ortho images and Digital Elevation Model (DEM) have been applied in various fields. It is necessary to acquire Ground Control Points (GCPs) for processing high resolution satellite images. However surveying GCPs require many time and expense. This study was performed to investigate whether GCPs automatically extracted from ortho images and DTED Level 2 can be applied to sensor modeling for high resolution satellite images. We analyzed the performance of the sensor model established by GCPs extracted automatically. We acquired GCPs by matching satellite image against ortho images. We included the height acquired from DTED Level 2 data in these GCPs. The spatial resolution of the DTED Level 2 data is about 30m. Absolution accuracy of this data is below 18m above MSL. The spatial resolution of ortho image is 1m. We established sensor model from IKONOS images using GCPs extracted automatically and generated DEMs from the images. The accuracy of sensor modeling is about $4{\sim}5$ pixel. We also established sensor models using GCPs acquired based on GPS surveying and generated DEMs. Two DEMs were similar. The RMSE of height from the DEM by automatic GCPs and DTED Level 2 is about 9 m. So we think that GCPs by DTED Level 2 and ortho image can use for IKONOS sensor modeling.

  • PDF

The Case Study : The Efficiency of Using UAV and 3D-model for Mine Reclamation Work Monitoring (무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰)

  • Kim, Seyoung;Yu, Jaehyung;Shin, Ji Hye;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigated the effectiveness of Unmanned Aerial Vehicle (UAV) and 3D modeling on mine reclamation monitoring. The high spatial resolution of 3.8 cm ortho-mosaic image and Digital Elevation Model (DEM) are constructed based on UAV air survey. The ortho-mosaic image effectively shows mine reclamation activities and recognize objects and topological changes in the image. The comparative analysis of 3D models between UAV based DEM and report based DEM reveals that total amount of $268,672m^3$ additional dumping of contaminated soil is equivalent to 710,000 ton. It concludes that a UAV based survey enables high accuracy spatial information extraction for mine reclamation activities with high efficiency. It is expected that UAV survey will be very effectively used for preliminary data acquisition and project monitoring for mine reclamation activities.

Sensitivity Analysis of Debris Flow Simulation in Flo-2D Using Flow Discharge and Topographic Information (유량과 지형조건에 따른 Flo-2D에서의 토석류 확산 민감도 분석)

  • Kim, Namgyun;Jun, Byonghee
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.547-558
    • /
    • 2022
  • In August 2020, a debris flow occurred in Gokseon, Jeollanam-do, that resulted in the death of five residents. In this study area, high-resolution 0.03 m topographic information was generated through photogrammetry, and the amount of soil movement/loss was measured. In addition, sensitivity analysis was performed for flow depth, flow velocity, and debris flow area with the program Flo-2D using the difference in simulation parameter that discharge and topographic information. Wth increasing debris flow input discharge, increases were seen in flow depth, flow velocity, and debris flow area, as ell as in the gap in results from high-resolution topographic information and low-resolution topographic information. Also, when high-resolution topographic information was used, the results were similar to the actual (measured) flow direction of the debris flow. Therefore, the application of high-resolution topographic information increases the accuracy of the debris flow analysis results compared with low-resolution information. Results could be further imporved in the future by considering geological information such as yield stress and viscosity.

Generation of Large-scale and High-resolution DEMs over Antarctica through a LIDAR survey

  • Lee, Im-Pyeong;Ahn, Yushin;Csatho, Bea;Schenk, Toni;Shin, Sung-Woong;Yoon, Tae-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1374-1376
    • /
    • 2003
  • NASA, NSF and USGS jointly conducted a LIDAR survey over several sites in the Antarctic Dry Valleys and its vicinity, acquiring numerous surface points by NASA's Airborne Topographic Mapper (ATM) conical laser scanning altimetry system. The data set have high blunder ratio, and the conical scanning pattern resulted large variation of the point densities. Hence, to reduce the undesirable effects due to these characteristics and process the huge number of points with reasonable time and resources, we developed a novel approach to generate large-scale and high-resolution DEMs in robust, efficient and nearly automatic manners. Based on this approach we produced DEMs and then verified them with reference data.

  • PDF

Generation Of High-Resolution Precise Dems Of The Antarctic Dry Valleys And Its Vicinity Based On Lidar Surveys

  • Lee, Impyeong;Park, Yunsoo;Park, Hong-Gi;Cho, Young-Won
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.02a
    • /
    • pp.38-44
    • /
    • 2004
  • NASA, NSF and USGS jointly conducted LIDAR surveys to acquire numerous surface points with high densities over the Antarctic Dry Valleys and its vicinity. The huge set of the points unusually includes many blunders, retaining large variation of the point densities. Hence, to reduce the undesirable effects due to these characteristics and process the huge number of points with reasonable time and resources, we developed an efficient, robust, nearly automatic approach to DEM generation. This paper reports about the application of this approach to generating high-resolution precise DEMs from the Antarctic LIDAR surveys and the evaluation of their accuracy.

  • PDF

Downscaling of Thematic Maps Based on Remote Sensing Data using Multi-scale Geostatistics (다중 스케일 지구통계학을 이용한 원격탐사 자료 기반 주제도의 다운스케일링)

  • Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • It is necessary to develop an integration model which can account for various data acquired at different measurement scales in environmental thematic mapping with high-resolution ground survey data and relatively low-resolution remote sensing data. This paper presents and applies a multi-scale geostatistical methodology for downscaling of thematic maps generated from lowresolution remote sensing data. This methodology extends a traditional ordinary kriging system to a block kriging system which can account for both ground data and remote sensing data which can be regarded as point and block data, respectively. In addition, stochastic simulation based on block kriging is also applied to describe spatial uncertainty attached to the downscaling. Two downscaling experiments including SRTM DEM and MODIS Leaf Area Index (LAI) products were carried out to illustrate the applicability of the geostatistical methodology. Through the experiments, multi-scale geostatistics based on block kriging successfully generated relatively high-resolution thematic maps with reliable accuracy. Especially, it is expected that multiple realizations generated from simulation would be effectively used as input data for investigating the effects of uncertain input data on GIS model outputs.