• Title/Summary/Keyword: high resolution DEM

Search Result 185, Processing Time 0.02 seconds

Spatial Characteristics of Gwangneung Forest Site Based on High Resolution Satellite Images and DEM (고해상도 위성영상과 수치고도모형에 근거한 광릉 산림 관측지의 공간적 특성)

  • Moon Sang-Ki;Park Seung-Hwan;Hong Jinkyu;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • Quantitative understanding of spatial characteristics of the study site is a prerequisite to investigate water and carbon cycles in agricultural and forest ecosystems, particularly with complex, heterogeneous landscapes. The spatial characteristics of variables related with topography, vegetation and soil in Gwangneung forest watershed are quantified in this study. To characterize topography, information on elevation, slope and aspect extracted from DEM is analyzed. For vegetation and soil, a land-cover map classified from LANDSAT TM images is used. Four satellite images are selected to represent different seasons (30 June 1999, 4 September 2000, 23 September 2001 and 14 February 2002). As a flux index for CO₂ and water vapor, normalized difference vegetation index (NDVI) is calculated from satellite images for three different grid sizes: MODIS grid (7km x 7km), intensive observation grid (3km x 3km), and unit grid (1km x 1km). Then, these data are analyzed to quantify the spatial scale of heterogeneity based on semivariogram analysis. As expected, the scale of heterogeneity decreases as the grid size decreases and are sensitive to seasonal changes in vegetation. For the two unit grids where the two 40 m flux towers are located, the spatial scale of heterogeneity ranges from 200 to 1,000m, which correspond well to the climatology of the computed tower flux footprint.

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

Investigation of Intertidal Zone using TerraSAR-X (TerraSAR-X를 이용한 조간대 관측)

  • Park, Jeong-Won;Lee, Yoon-Kyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2009
  • The main objective of the research is a feasibility study on the intertidal zone using a X-band radar satellite, TerraSAR-X. The TerraSAR-X data have been acquired in the west coast of Korea where large tidal flats, Ganghwa and Yeongjong tidal flats, are developed. Investigations include: 1) waterline and backscattering characteristics of the high resolution X-band images in tidal flats; 2) polarimetric signature of halophytes (or salt marsh plants), specifically Suaeda japonica; and 3) phase and coherence of interferometric pairs. Waterlines from TerraSAR-X data satisfy the requirement of horizontal accuracy of 60 m that corresponds to 20 cm in average height difference while current other spaceborne SAR systems could not meet the requirement. HH-polarization was the best for extraction of waterline, and its geometric position is reliable due to the short wavelength and accurate orbit control of the TerraSAR-X. A halophyte or salt marsh plant, Suaeda japonica, is an indicator of local sea level change. From X-band ground radar measurements, a dual polarization of VV/VH-pol. is anticipated to be the best for detection of the plant with about 9 dB difference at 35 degree incidence angle. However, TerraSAR-X HH/TV dual polarization was turned to be more effective for salt marsh monitoring. The HH-HV value was the maximum of about 7.9 dB at 31.6 degree incidence angle, which is fairly consistent with the results of X-band ground radar measurement. The boundary of salt marsh is effectively traceable specifically by TerraSAR-X cross-polarization data. While interferometric phase is not coherent within normal tidal flat, areas of salt marsh where the landization is preceded show coherent interferometric phases regardless of seasons or tide conditions. Although TerraSAR-X interferometry may not be effective to directly measure height or changes in tidal flat surface, TanDEM-X or other future X-band SAR tandem missions within one-day interval would be useful for mapping tidal flat topography.

A Study on the Debris Flow Hazard Mapping Method using SINMAP and FLO-2D

  • Kim, Tae Yun;Yun, Hong Sic;Kwon, Jung Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.15-24
    • /
    • 2016
  • This study conducted an evaluation of the extent of debris flow damage using SINMAP, which is slope stability analysis software based on the infinite slope stability method, and FLO-2D, a hydraulic debris flow analysis program. Mt. Majeok located in Chuncheon city in the Gangwon province was selected as the study area to compare the study results with an actual 2011 case. The stability of the slope was evaluated using a DEM of $1{\times}1m$ resolution based on the LiDAR survey method, and the initiation points of the debris flow were estimated by analyzing the overlaps with the drainage network, based on watershed analysis. In addition, the study used measured data from the actual case in the simulation instead of existing empirical equations to obtain simulation results with high reliability. The simulation results for the impact of the debris flow showed a 2.2-29.6% difference from the measured data. The results suggest that the extent of damage can be effectively estimated if the parameter setting for the models and the debris flow initiation point estimation are based on measured data. It is expected that the evaluation method of this study can be used in the future as a useful hazard mapping technique among GIS-based risk mapping techniques.

Revision of 1/1,000 digital Map for Application of 3Dimensional Geospatial Data (1/1,000 수치지도의 수정을 위한 3차원 공간정보의 활용 방안)

  • Lee, Hyunjik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.2
    • /
    • pp.77-86
    • /
    • 2014
  • As raster-based high quality and resolution spatial information has appeared, 1/1,000 digital map lost either its recognition or uses because of insufficient new modified and updated information. Therefore, this study analyzed the linkage between three-dimensional spatial information and 1/1,000 digital map, and also suggested a modification plan of 1/1,000 digital map, made by three-dimensional spatial information. In fact, some area of Incheon and Busan were presented with the modification plan of 1/1,000 digital map as three-dimensional trial models. These trials reflected possibilities of modification by qualitative and quantitative analysis of 1/1,000 digital map, using three-dimensional object model.

Development of HDF Browser for the Utilization of EOC Imagery

  • Seo, Hee-Kyung;Ahn, Seok-Beom;Park, Eun-Chul;Hahn, Kwang-Soo;Choi, Joon-Soo;Kim, Choen
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2002
  • The purpose of Electro-Optical Camera (EOC), the primary payload of KOMPSAT-1, is to collect high resolution visible imagery of the Earth including Korean Peninsula. EOC images will be distributed to the public or many user groups including government, public corporations, academic or research institutes. KARI will offer the online service to the users through internet. Some application, e.g., generation of Digital Elevation Model (DEM), needs a secondary data such as satellite ephemeris data, attitude data to process the EOC imagery. EOC imagery with these ancillary information will be distributed in a file of Hierarchical Data Format (HDF) file formal. HDF is a physical file format that allows storage of many different types of scientific data including images, multidimensional data arrays, record oriented data, and point data. By the lack of public domain softwares supporting HDF file format, many public users may not access EOC data without difficulty. The purpose of this research is to develop a browsing system of EOC data for the general users not only for scientists who are the main users of HDF. The system is PC-based and huts user-friendly interface.

Utilization Plan Research of High Resolution Images for Efficient River Zone Management (효율적 하천구역관리를 위한 고해상 영상의 활용 방안 연구)

  • Park, Hyeon-Cheol;Kim, Hyoung-Sub;Jo, Yun-Won;Jo, Myung-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2008
  • The river management in Korea had been focused on line based 2D spatial data for the developing river management application system. In this study, the polygon based 3D spatial data such as aerial photos and satellite images were selected and used through comparing their resolution levels for the river environment management. In addition, 1m detailed DEM (Digital Elevation Model) was constructed to implement the real topography information around river so that the damage area scale could be extracted for flood disaster. Also, the social environment thematic maps such as a cadastral map or land cover map could be used to verify the real damage area scale by overlay analysis on aerial photos or satellite images. The construction of these spatial data makes possible to present the real surface information and extract quantitative analysis to support the scientific decision making for establishing the river management policy. For the further study, the lidar surveying data will be considered as the very useful data by offering the real height information of riverbed as the depth of river so that flood simulation can give more reality.

Comparisons of 1-Hour-Averaged Surface Temperatures from High-Resolution Reanalysis Data and Surface Observations (고해상도 재분석자료와 관측소 1시간 평균 지상 온도 비교)

  • Song, Hyunggyu;Youn, Daeok
    • Journal of the Korean earth science society
    • /
    • v.41 no.2
    • /
    • pp.95-110
    • /
    • 2020
  • Comparisons between two different surface temperatures from high-resolution ECMWF ReAnalysis 5 (ERA5) and Automated Synoptic Observing System (ASOS) observations were performed to investigate the reliability of the new reanalysis data over South Korea. As ERA5 has been recently produced and provided to the public, it will be highly used in various research fields. The analysis period in this study is limited to 1999-2018 because regularly recorded hourly data have been provided for 61 ASOS stations since 1999. Topographic characteristics of the 61 ASOS locations are classified as inland, coastal, and mountain based on Digital Elevation Model (DEM) data. The spatial distributions of whole period time-averaged temperatures for ASOS and ERA5 were similar without significant differences in their values. Scatter plots between ASOS and ERA5 for three different periods of yearlong, summer, and winter confirmed the characteristics of seasonal variability, also shown in the time-series of monthly error probability density functions (PDFs). Statistical indices NMB, RMSE, R, and IOA were adopted to quantify the temperature differences, which showed no significant differences in all indices, as R and IOA were all close to 0.99. In particular, the daily mean temperature differences based on 1-hour-averaged temperature had a smaller error than the classical daily mean temperature differences, showing a higher correlation between the two data. To check if the complex topography inside one ERA5 grid cell is related to the temperature differences, the kurtosis and skewness values of 90-m DEM PDFs in a ERA5 grid cell were compared to the one-year period amplitude among those of the power spectrum in the time-series of monthly temperature error PDFs at each station, showing positive correlations. The results account for the topographic effect as one of the largest possible drivers of the difference between ASOS and ERA5.

An Automated OpenGIS-based Tool Development for Flood Inundation Mapping and its Applications in Jeju Hancheon (OpenGIS 기반 홍수범람지도 작성 자동화 툴 개발 및 제주 한천 적용 연구)

  • Kim, Kyungdong;Kim, Taeeun;Kim, Dongsu;Yang, Sungkee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.691-702
    • /
    • 2019
  • Flood inundation map has various important roles in terms of municipal planning, timely dam operation, economic levee design, and building flood forecasting systems. Considering that the riparian areas adjacent to national rivers with high potential flood vulnerability conventionally imposed special cares to justify applications of recently available two- or three-dimensional flood inundation numerical models on top of digital elevation models of dense spatial resolution such as LiDAR irrespective of their high costs. On the contrary, local streams usually could not have benefits from recent technological advances, instead they inevitably have relied upon time-consuming manual drawings or have accepted DEMs with poor resolutions or inaccurate 1D numerical models for producing inundation maps due mainly to limited budgets and suitable techniques. In order to efficiently and cost-effectively provide a series of flood inundation maps dedicatedly for the local streams, this study proposed an OpenGIS-based flood mapping tool named Open Flood Mapper (OFM). The spatial accuracy of flood inundation map derived from the OFM was validated throughout comparison with an inundation trace map acquired after typhoon Nari in Hancheon basin located in Jeju Island. Also, a series of inundation maps from the OFM were comprehensively investigated to track the burst of flood in the extreme flood events.

Analysis of Debris Flow Deposition based on Topographic Characteristics of Debris Flow Path (유하부 지형 특성에 따른 토석류 퇴적 분석)

  • Kim, Gihong;Youn, Junhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.471-481
    • /
    • 2013
  • Recently, the frequency of debris flow disaster has increased, which is one of the natural disasters during extremely heavy rainfall condition. This paper described the analysis method about deposition characteristics of debris flow using topographic characteristics of debris flow path. First, we observed topographic changes by differencing high- resolution LiDAR DEMs acquired before and after the occurrence of debris flow event. We assumed that deposition on outside of debris flow path was generated by movements due to the inertia of debris flows. Then, we analyzed three topographic characteristics of debris flow path: slope in flow direction, transition angle of flow path, and the net efficiency(L/H) of debris flows defined by the ratio of transport length(L) and elevation difference(H). We applied this method to Umyeon Mountain debris flow event in July 2011. The results showed that deposition on outside of debris flow path due to the inertia of debris flows was significantly related to the transition angle of debris flow path. Also, we figured out that there were more frequent such depositions in locations where the ratio of 'transition angle / (L/H)' is over 8.