• 제목/요약/키워드: high purity graphite

검색결과 22건 처리시간 0.02초

Levitation법에 의한 고순도 Fe-C-Si 합금중의 흑연결정의 핵생성 및 성장 (Nucleation and Growth of Graphite Crystal of Levitation Melted High Purity Fe-C-Si Alloys)

  • 김영직;서수정
    • 한국주조공학회지
    • /
    • 제11권3호
    • /
    • pp.236-244
    • /
    • 1991
  • This paper describes a study of the nucleation and growth of graphite crystal of levitation melted high purity Fe-C-Si alloys with emphasis on hypereutectic composition. Spherulitic graphite was observed to form at high purity alloy and converted to compacted by changing the starting iron from ultra-pure zone refined iron to 99.95 pct electrolitic iron. Residual C-C clusters might be acting as an effective nucleation site for graphite, and sulphur was the element to prevent graphite from nucleating. The graphite morphology changed from compacted to spherulitic as the sulphur content decreased.

  • PDF

Microbubble Column에 의한 인상흑연(鱗狀黑鉛)의 부선(浮選)에 관한 연구(硏究) (A study on Flotation of Crystalline Graphite by Microbubble Column)

  • 한오형;강현호
    • 자원리싸이클링
    • /
    • 제15권2호
    • /
    • pp.37-44
    • /
    • 2006
  • 국내 흑연광의 총 매장량은 약 260만 톤 정도이지만, 국제경쟁력을 가지지 못해 현재는 일부 광산에서만 채광하고 있다. 그러나 최근 휴대용 전자제품의 수요가 증가함에 따라 2차 전지의 전극에 사용되는 고순도의 흑연을 전량 고가로 수입에 의존하고 있어, 고순도 흑연의 국산화를 위한 연구가 필요한 실정이다. 그러므로 본 연구에서는 고순도 흑연을 생산하기 위한 전처리 단계로서 29.50% F.C.의 원광($D_{50}=69.393{\mu}m$)시료를 attrition mill에서 20분 마광($D_{50}=10.314{\mu}m$)하여 microbubble column을 이용하여 실험한 결과 정선과정 없이도 95% F.C. 이상의 산물을 90%이상의 회수율로 얻을 수 있었다.

흑연결정의 핵생성에 미치는 미량 유황의 영향 (Effect of Sulphur on the Nucleation Behavior of Graphite Crystals)

  • 김영직
    • 한국주조공학회지
    • /
    • 제14권6호
    • /
    • pp.520-529
    • /
    • 1994
  • This study describes the influence of the trace amount of sulphur on the nucleation behavior of graphite crystals in high purity Fe-C-Si alloys prepared by levitation melting method. Detailed microstructural analyses of high purity(HP) and sulphur added(HP+S) samples showed that the nucleation of graphite crystals was prevented by sulphur. With decreasing the sulphur content, the shape of graphite crystals tended to spherulitic, and below 2ppm S, that of graphite crystals was only nodular. The critical cooling rate for the nucleation of griphite crystals was calculated as $1.5{\times}10^3k/s$. It is obvious from this work that residual C-C clusters act as an effective nucleation site for graphite crystals and one of the important role of nodularizing elements is to act as scavenger which removes harmful impurities from the solution.

  • PDF

Direct Conversion Sintering of Super-hard Nano-polycrystalline Diamond from Graphite

  • Sumiya, Hitoshi;Irifune, Tetsuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1309-1310
    • /
    • 2006
  • High-purity and super-hard nano-polycrystalline diamond has been successfully synthesized by direct conversion from high-purity graphite under static pressures above 15 GPa and temperatures above $2300^{\circ}C$. This paper describes research findings on the formation mechanism of nano-structure and on the contributing factor leading to high hardness.

  • PDF

Electrodeposition of Silicon from Fluorosilicic Acid Produced in Iraqi Phosphate Fertilizer Plant

  • Abbar, Ali H.;Kareem, Sameer H.;Alsaady, Fouad A.
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.168-173
    • /
    • 2011
  • The availability, low toxicity, and high degree of technological development make silicon the most likely material to be used in solar cells, the cost of solar cells depends entirely on cost of high purity silicon production. The present work was conducted to electrodeposite of silicon from $K_2SiF_6$, an inexpensive raw material prepared from fluorosilicic acid ($H_2SiF_6$) produced in Iraqi Fertilizer plants, and using inexpensive graphite material as cathode electrode. The preparation of potassium fluorosilicate was performed at ($60^{\circ}C$) in a three necks flask provided with a stirrer, while the electro deposition was performed at $750^{\circ}C$ in a three-electrodes configuration with melt containing in graphite pot. High purity potassium fluorosilicate (99.25%) was obtained at temperature ($60^{\circ}C$), molar ratio-KCl/$H_2SiF_6$(1.4) and agitation (600 rpm). Spongy compact deposits were obtained for silicon with purity not less than (99.97%) at cathode potential (-0.8 V vs. Pt), $K_2SiF_6$ concentration (14% mole percent) with grain size (130 ${\mu}m$) and level of impurities (Cu, Fe and Ni) less than (0.02%).

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Characterizations of Precipitated Zinc Powder Produced by Selective Leaching Method

  • Marwa F. Abd;F. F. Sayyid;Sami I. Jafar Al-rubaiey
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.54-63
    • /
    • 2024
  • This work investigated the influence of concentration and applied potential on the characteristics of zinc powder (purity, apparent density, morphology, particle size distribution, and particle zeta potential) produced by the electrochemical process from waste brass. High-purity zinc powder is obtained using selective leaching of industrial brass waste in acidic, neutral, and alkaline solutions. The free immersion method with and without voltage using linear polarization technique is used. In the electrochemical process, hydrochloric acid HCl in three different concentrations (0.1, 0.2, and 0.3) M is used. The time and the distance between the electrodes are set to be 30 min and 3 cm, respectively. It has been found that the percentage purity is 98%, 96%, and 94% for the acidic, neutral, and alkaline solutions, respectively. In addition, the morphology of zinc powder analyzed by SEM was dendritic and mossy. It has been recorded that the purity of zinc increases with the increase of the concentration and applied potential. The highest value of purity for zinc powder was %98.58 in 1000 mV and 0.3M concentration for graphite cathode.

고순도 SiC 미분말을 적용한 4H-SiC 단결정 성장에 관한 연구 (Study on the growth of 4H-SiC single crystal with high purity SiC fine powder)

  • 신동근;김병숙;손해록;김무성
    • 한국결정성장학회지
    • /
    • 제29권6호
    • /
    • pp.383-388
    • /
    • 2019
  • 개선된 열탄소환원법으로 합성된 금속불순물함량 1 ppm 이하의 고순도 SiC 미립 분말을 이용하여 2,100℃ 이상고온의 RF 가열 PVT 장치에서 SiC 단결정을 성장시켰으며, In-situ x-ray 이미지 분석을 통해 성장과정 중 분말의 승화거동 및 단결정 성장거동을 관찰하였다. SiC 분말은 단결정 성장의 공급원으로 온도가 높은 외곽 부분부터 소진되고 graphite 잔여물이 남았다. 성장 중 원료의 흐름은 가운데 부분으로 집중되었으며 SiC 단결정의 성장거동에도 영향을 미쳤는데, 이는 미립분말로 인한 도가니 내부 온도분포 차이가 원인으로 예상되었다. 단결정 성장이 완료된 후, 단결정 잉곳을 1 mm 두께의 단결정 기판으로 절단하고 또한, 잉곳에서 얻어진 단결정 기판은 전반적으로 짙은 황색의 4H -SiC가 관찰되었으며, 외곽에 일부 발생한 다결정은 시드결정을 시드홀더에 부착하는 과정에서 혼입된 기포층과 같은 불순물 혼입이 원인으로 사료된다.

고순도 SiC 파우더를 이용한 반절연 SiC 단결정 성장 (Semi-Insulating SiC Single Crystals Grown with Purity Levels in SiC Source Materials)

  • 이채영;최정민;김대성;박미선;장연숙;이원재;양인석;김태희;첸시우팡;슈시앙강
    • 한국전기전자재료학회논문지
    • /
    • 제32권2호
    • /
    • pp.100-103
    • /
    • 2019
  • The change in vanadium amount according to the growth direction of vanadium-doped semi-insulated (SI) SiC single crystals using high-purity SiC powder was investigated. High-purity SiC powder and a porous graphite (PG) inner crucible were placed on opposite sides of SiC seed crystals. SI SiC crystals were grown on 2 inch 6H-SiC Si-face seeds at a temperature of $2,300^{\circ}C$ and growth pressure of 10~30 mbar of argon atmosphere, using the physical vapor transport (PVT) method. The sliced SiC single crystals were polished using diamond slurry. We analyzed the polytype and quality of the SiC crystals using high-resolution X-ray diffraction (XRD) and Raman spectroscopy. The resistivity of the SI SiC crystals was analyzed using contactless resistivity mapping (COREMA) measurements.

새로운 가이드 튜브를 통한 6H-SiC 단결정의 직경 확장에 관한 연구 (The Diameter Expansion of 6H-SiC Single Crystals by the Modification of Inner Guide Tube)

  • 손창현;최정우;이기섭;황현희;최종문;구갑렬;이원재;신병철
    • 한국전기전자재료학회논문지
    • /
    • 제21권9호
    • /
    • pp.795-800
    • /
    • 2008
  • A sublimation method using the SiC seed crystal and SiC powder as the source material is commonly adopted to grow SiC bulk single crystal. However, it has proved to be difficult to achieve the high quality crystal and the process reliability because SiC single crystal should be grown at very high temperature in closed system. The present research was focused to improve SiC crystal quality grown by PVT method through using the new inner guide tube. The new inner guide tube was designed to prevent the enlargement of polycrystalline region into single crystalline region and to enlarge the diameter of SiC single crystal. The 6H-SiC crystals were grown by conventional PVT process. The seed adhered on seed holder and the high purity SiC source materials are placed on opposite side in sealed graphite crucible surrounded by graphite insulation. The SiC bulk growth was conducted around 2300 $^{\circ}C$ of growth temperature and 50 mbar in an argon atmosphere of growth pressure. The axial thermal gradient across the SiC crystal during the growth was estimated in the range of 15${\sim}$20 $^{\circ}C$/cm.