• Title/Summary/Keyword: high pressure device

Search Result 567, Processing Time 0.026 seconds

A Study on the Hydraulic Fall Prevention Device (유압식 추락 방지장치에 관한 연구)

  • Choi, Jung-Hun;Koo, Jae-Mean;Seok, Chang-Sung;Huh, Yong;Chang, Sung-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.78-83
    • /
    • 2010
  • Since a tower crane is too high for a worker to ascend and by the wind in the high altitude, the possibility of a safety accident is very high, a lift assist is used. In this study, the hydraulic fall prevention device using the pressure generation device by Seok, et al. was developed. For this, the effects on the fall prevention performances of factors such as gear clearance, oil viscosity, rotative velocity and so on were evaluated by the analysis of fluid flow using FEM and the prototype was producted and a function test was performed.

A Study on Injection Characteristic using Active Temperature Control of Injection mold (사출 금형의 능동형 온도제어에 따른 사출특성에 관한 연구)

  • Cho, C.Y.;Sin, H.G.;Hong, N.P.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.302-305
    • /
    • 2007
  • In recent years, many researches on new storage media with high capacity and information are developing. For manufacture of optical storage with high capacity, the injection molding process is generally used. In order to increase the filling ratio of the injection molding structure, the injection molding process required for high injection pressure, packing pressure and temperature control of the mold. However, conventional injection molding process is difficult to increase the filling ratio using injection master with the range of several nanometers and high aspect ratio. In order to improve and increase filling ratio of nano-structure with high aspect ratio, the active temperature control of injection mold was used. Experimental conditions were used injection pressure, time and temperature. Consequently, by using the peltier device into injection mold, we carried out the efficient and active temperature control of mold at low cost.

  • PDF

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

A Portable Skin Elasticity Measuring Device Based on Indentation Method Using Piezoelectric Effect (압전효과를 이용한 압인방식의 휴대용 피부탄력 측정장치)

  • Park, Jun-Young;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1307-1315
    • /
    • 2022
  • In this paper, we proposed and developed a new portable skin elasticity measuring device based on the indentation method using piezoelectric effect. The proposed device is designed to minimize the uncertainty caused by the layer structure of the skin when measuring the elasticity of the skin. And, we developed a piezoelectric-based thin-film pressure sensor that can measure quantitatively and quickly during repeated measurement as a device sensor. To confirm the effectiveness of the proposed measuring device, it was compared with the experimental results of the conventional measuring devices under the same experimental conditions, and statistical correlation analysis was performed between the experimental data of the proposed measuring device and the experimental data of the conventional measuring devices. As a result of the correlation analysis, it was confirmed that the proposed measuring device had a high correlation with the conventional measuring devices. Therefore, it was confirmed that the proposed skin elasticity measuring device was effective.

Correlation between the Diaphragmatic Contraction Pressure and the Slow Vital Capacity

  • Lee, Jae-Seok;Han, Dong-Wook;Kang, Tae-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.47-53
    • /
    • 2019
  • PURPOSE: This study measured the external pressure on abdomen during maximal inspiration. The study determined the correlation between the diaphragmatic contraction pressure and the lung capacities to verify whether or not the measured pressure values can represent diaphragmatic contractility. METHODS: The study included 32 healthy subjects (16 males and 16 females). The researchers fabricated their own diaphragmatic pressure belt (DiP Belt) to measure DCP. DiP Belt device was fixed on the front of the abdomen and the diaphragmatic contractility was measured during maximal inspiration. The lung capacities were measured using a portable digital spirometer device (Pony Fx, COSMED, Italy). A digital spirometer is a device that is used to test the flow of air entering and exiting the lungs. RESULTS: DCP showed significant positive correlations with vital capacity (VC), inspiratory reserve volume (IRV) and inspiratory capacity (IC). Among values of lung capacities, IC showed especially strong positive correlations with the DCP (r =.714, p<.010). For the males, DCP showed significant positive correlations with IRV and IC, and DCP showed significant negative correlation with the expiratory reserve volume (ERV). For the females, DCP showed significant positive correlation with tidal volume (VT), but any significant correlation was not found with any of the other values of lung capacities. CONCLUSION: DCP showed high correlations with IRV and IC associated with inspiratory capacity. Therefore, The DiP Belt can be looked upon as a simple device that is very useful for measuring diaphragmatic contractility.

Absorption Properties of Coarse Aggregate according to Pressurization for Development of High Fluidity Concrete under High Pressure Pumping (고압송용 고유동콘크리트 개발을 위한 가압에 따른 굵은골재의 흡수 특성)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.122-129
    • /
    • 2016
  • In this study, we developed a pressing device which can reproduce the pressure of concrete inside the conveying pipe as a part of the basic study to development of high fluidity concrete under high pressure pumping. Using this pressing device, we evaluated a absorption properties of aggregate that are crushed coarse aggregate, river gravel and lightweight coarse aggregate according to pressure of coarse aggregate and aggregate inside a high fluidity concrete, focused on the reduction of unit water quantity by pressure. In addition, it was evaluated the compressive strength of high fluidity concrete about before and after of pressive. Test a result, case of condition under the high pressure of 250 bar, absorption ratio of crushed coarse aggregate and river gravel were not increased above the surface absorption, absorption ratio of lightweight coarse aggregate was increased than the surface absorption.

Thermodynamic Design of J-T Neon Refrigeration System Utilizing Modified Roebuck Compression Device (변형 Roebuck 압축기를 이용한 J-T 네온 냉각시스템의 열역학적 설계)

  • 정제헌;정상권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.5
    • /
    • pp.432-438
    • /
    • 2003
  • This paper describes a modified Roebuck compression device as a potential compression device of a rotating cryogenic refrigeration system in superconducting machine such as generator or motor. The conventional cryogen transfer method from stationary refrigeration system to rotating system can be eliminated by an on-board cryogenic refrigeration system that utilizes well-designed multi-stage modified Roebuck compression device. This paper shows basic thermodynamic analysis of modified Roebuck compression device and its application for compressing neon at 77 K with substantial pressure ratio when the rotor diameter is 0.8 m with rotating speed of 3600 rpm. The device does not require any moving part in rotating frame, but two separate thermal reservoirs to convert thermal energy into mechanical compression work. The high temperature thermal reservoir is atmospheric environment at 300 K and the low temperature thermal reservoir is assumed as a liquid nitrogen bath at 77 K. The concept of the compression device in this paper demonstrates its usefulness of generating high-pressure neon at 77 K for rotating J-T neon refrigeration cycle of superconducting rotor.

Development of Design Method on High Pressure Vessel of 100L-700MPa Grade (100L-700MPa급 초고압 용기 설계 기술 개발)

  • Park, Bo-Gyu;Lee, Ho-Joon;Lee, In-Jun;Park, Si-Woo;Cho, Kyu-Shang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.67-73
    • /
    • 2019
  • An ultra-high pressure treatment device is a device used for increasing the shelf life of food by sterilizing it by applying hydrostatic pressure to solid or liquid food. The ultrahigh pressure treatment system developed in this study is a pressure vessel with a processing capacity of 100 L and a maximum pressure of 700 MPa. Pressure vessels for ultrahigh-pressure processing equipment are manufactured using wire-winding techniques. The design formula for making ultra-high pressure vessels with wire windings is given in ASME Section VIII - Division 3. In this study, the ratio of the cylinder to the winding area that can be applied in a wire-winding application was analyzed using a finite element analysis. Furthermore, the relationship between the variation of the residual stress in the vessel and the ratio of the winding area due to the variation of the winding tension was analyzed, and a design guide applicable to the actual product design was developed. Finally, the design equation was modified by presenting the coefficients to correct the difference between the finite element analysis and the design equation.

Characteristics Influencing the Occurrence of Respiratory Medical Device-related Pressure Ulcers in the Pediatric Intensive Care Unit (소아중환자실 환아의 호흡기계 의료장치 관련 욕창 발생 관련 특성)

  • Kim, Hae-kyung;Kim, Younghae;Son, Hyun-Mi
    • Child Health Nursing Research
    • /
    • v.25 no.2
    • /
    • pp.133-142
    • /
    • 2019
  • Purpose: This prospective study was conducted to determine the incidence and related characteristics of respiratory medical device-related pressure ulcers (MDRPU) in children admitted to a pediatric intensive care unit (PICU). Methods: The participants were 184 children who were admitted to the PICU of P University Hospital from April 2016 to January 2017. Data were collected on the occurrence of respiratory MDRPU and characteristics regarding the application of respiratory medical devices. Results: Respiratory MDRPU occurred in 11.9% of participants (58.3%: stage I ulcers, 37.5%: mucosal ulcers). The devices associated with respiratory MDRPU were endotracheal tubes (54.2%), high-flow nasal cannulas (37.5%), and oximetry probes (8.3%). Respiratory MDRPU associated with an endotracheal tube were significant differences according to the site and strength of fixation, the use of a bite block and adhesive tape, skin dryness, and edema. In high-flow nasal cannulas, significant differences were found according to the site of fixation, immobility after fixation, and skin dryness. Conclusion: The occurrence of respiratory MDRPU is significantly affected by the method and strength of fixation, as well as skin dryness and edema. Therefore, appropriate consideration of these factors in nursing care can help prevent respiratory MDRPU.

Comparison of Cushion Performance on Parameter Changes in High Speed Pneumatic Cylinder Driving System (공기압 실린더 고속 구동시스템에서 파라미터 변화에 따른 쿠션성능 비교)

  • Kim, Do Tae;Jang, Zhong Jie
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.54-59
    • /
    • 2015
  • Due to the tendency to use high speed pneumatic cylinders to improve productivity, cushioning devices are adopted to decelerate the piston motion of pneumatic cylinders to reduce noise, vibration, and impact. This paper presents a comparison of the cushion characteristics of a high speed pneumatic cylinder with a relief valve type cushioning device. The system parameters selected are the damping coefficient, Coulomb friction, heat transfer coefficient, and cracking pressure of the relief valve in the air cushioning device. The integral of the time multiplied square error (ITSE) is used to quantitative measure the cushioning performance to assess the effect of varying these. The cushioning performance achieved good results when the ITSE is a minimum value. In a comparison of the piston displacement and velocity with the variations in system parameters, the heat transfer coefficients are not as significantly affected as the other. Also, the cracking pressure of the relief valve is mainly affected by the pressure and temperature in the cushion chamber.