• Title/Summary/Keyword: high power

Search Result 23,183, Processing Time 0.041 seconds

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Analysis of partial resonant AC-DC converter for high power and power factor

  • Mun, Sang-Pil;Kim, Si-Lyur;Lee, ki-Youn;Hyun-Woo;Katsunori taniguchi, Katsunori-Taniguchi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.920-927
    • /
    • 1998
  • This paper proposed that an Analysis of a partial resonant AC-DC converter for high power and power factor operates with four choppers connecting to a number of parallel circuit. To improve these, a large number of soft switching topologies included a resonant circuit have been proposed. And, some simulative results on computer are included to confirm the validity of the analytical results. The partial resonant circuit makes use of an inductor using step-down and a condenser of lose-less snubber. The result is that the switching loss is very low and the efficiency of system is high. And the snubber condenser used in a partial resonant circuit makes charging energy regenerated at input power source for resonant operation. The proposed conversion system is deemed the most suitable for high power applications where the power switching devices are used

  • PDF

A Study of Smart Uninterruptible Power Supply Capable High Efficiency Drive (고효율 운전이 가능한 지능형 무정전 전원장치에 관한 연구)

  • Eom, Tae-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, a control scheme with the capability of high efficiency, which is realized by predicting the conditions of a load power and an input power, is proposed for the uninterruptible power supply (UPS). Generally, on-line UPS system supplies a constant voltage and a constant frequency (CVCF). However, the efficiency of the On-line UPS system can be reduced due to the switching losses of semiconductor devices during the power conversion. The these losses are improved by the proposed smart UPS with the high efficiency drive system, which is realized by analysing and predicting the conditions of a load power and an input power.

Economic Assessments of LFAC and HVDC Transmissions for Large Offshore Wind Farms

  • Park, Taesik;Kwak, Nohong;Moon, Chaeju;Cha, Seungtae;Kwon, Seongchul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Offshore wind farms extend a distance from an onshore grid to increase their generating power, but long distance and high power transmissions raise a lot of cost challenges. LFAC (Low Frequency AC) transmission is a new promising technology in high power and low cost power transmission fields against HVDC (High Voltage DC) and HVAC (High Voltage AC) transmissions. This paper presents an economic comparison of LFAC and HVDC transmissions for large offshore wind farms. The economic assessments of two different transmission technologies are analyzed and compared in terms of wind farm capacities (600 MW and 900 MW) and distances (from 25 km to 100 km) from the onshore grid. Based on this comparison, the economic feasibility of LFAC is verified as a most economical solution for remote offshore wind farms.

A Controllable LCL-T Resonant AC/DC Converter for High Frequency Power Distribution Systems

  • Zeng, Jun;Li, Xuesheng;Liu, Junfeng
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.876-885
    • /
    • 2015
  • High frequency alternating current (HFAC) has been widely used in a wide range of power distribution systems (PDS) due to its superior performance. A high frequency AC/DC converter plays the role of converting HFAC voltage to DC voltage. In this paper, a new LCL-T resonant AC/DC converter has been proposed, and an easier control method based on input voltage comparison is presented, without the complicated calculation of the zero-crossing point. Both a low distortion and near-to-unity power factor can be achieved by the proposed resonant converter and control strategy. The operational principle and steady-state analysis are given for the proposed resonant converter. A simulation model and experimental prototype are implemented with an operation frequency of 25kHz and a rated power of 20W. The simulation and experimental results verify the accuracy of the analysis and the excellent performance of the proposed topology.

Power Electronics as an Enabling Technology for Renewable Energy Integration

  • Blaabjerg, F.;Chen, Z.
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The global electrical energy consumption is still rising and there is a steady demand to increase the power capacity, to produce, distribute and use the energy as0 efficient as possible and furthermore to set up incentives to save energy at the md-user. Two major technologies will play important roles to fulfill those targets. One is to change the electrical power production sources from the conventional, fossil (and short term) based energy sources to renewable energy resources. The other is to use high efficiency power electronics in power systems for high efficiency and high performance applications. This paper discusses both areas, in particular the power electronic application in wind power integration.

Development of High Voltage, High Efficiency DC-DC Power Module for Modern Shipboard Multi-Function AESA Radar Systems (함정용 다기능 AESA 레이더 시스템을 위한 고전압·고효율 DC-DC 전원모듈 개발)

  • Chong, Min-Kil;Lee, Won-Young;Kim, Sang-Keun;Kim, Su-Tae;Kwon, Simon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • For conventional AESA radars, DC-DC power modules using 300 Vdc have low efficiency, high volume, heavy weight, and high price, which have problems in modularity with T/R module groups. In this paper, to improve these problems, we propose a distributed DC-DC power module with high-voltage 800 Vdc and high-efficiency Step-down Converter. In particular, power requirements for modern and future marine weapons systems and sensors are rapidly evolving into high-energy and high-voltage power systems. The power distribution of the next generation Navy AESA radar antenna is under development with 1000 Vdc. In this paper, the proposed highvoltage, high-efficiency DC-DC power modules increase space(size), weight, power and cooling(SWaP-C) margins, reduce integration costs/risk, and reduce maintenance costs. Reduced system weight and higher reliability are achieved in navy and ground AESA systems. In addition, the proposed architecture will be easier to scale with larger shipboard radars and applicable to other platforms.

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

A High Voltage Power Supply for X-Ray Tube Using High Frequency (고주파 인버터식 X-선관용 고전압 전원장치)

  • Kim, H.S.;Yoo, D.W.;Cho, J.G.;Back, J.W.;Rim, G.H.;Won, C.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2246-2248
    • /
    • 1997
  • This paper presents a high-frequency inverter type high-voltage power supply for X-ray equipments. The high-voltage generator consist of an inverter unit including the SR(Series Resonance) type PSC(Phase-Shifted Control) PWM circuit adopting IGBT as the switching power device and high-voltage unit including the CW(Cockcroft Walton) circuit. When the X-ray equipment is radiographing at large power for a short time, this generator operates through feedback voltage mode control to obtain a high speed leading edge and low ripple. The operating modes and design consideration of the proposed power supply are given. Issues in the design of high-voltage divider for high voltage measuring. Experimental results are presented to verify the performance of the designed power supply for varying load conditions. The proposed apparatus has several advantages, e.g., the fast rising time of tube voltage, accuracy and reduced component size etc.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF