• Title/Summary/Keyword: high porosity

Search Result 1,045, Processing Time 0.03 seconds

In vitro investigation of algin impregnated vascular graft (알진이 도포된 인공혈관의 물성 평가)

  • Lee, Jin-Ho;Shin, Bung-Chul;Khang, Gil-Son;Lee, Hai-Bang
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1990 no.05
    • /
    • pp.9-12
    • /
    • 1990
  • He impregnated a highly porous, knitted polyester (Dacron) graft with a biodegradable nonproteinaceous material, algin. This new vascular graft is blood tight but still retains high porosity in the body. It does not need to be preclotted with blood before implantation and has good tissue ingrowth and biological healing properties due to the high porosity. The algin impregnated graft was investigated by "in vitro" examinations in this study. It was characterized by ESCA analysis, SEM observation, and measurements of water permeability, algin coating weight, mechanical properties and whole blood clotting time. The water permeability of the graft was reduced more than 99% by the algin impregnation treatment without changing any mechanical properties. "In vivo" examinations of the algin impregnated vascular graft are on progress.

  • PDF

Novel high performanced and fouling resistant PSf/ZnO membranes for water treatment

  • Sarihan, Adem;Eren, Erdal
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.563-574
    • /
    • 2017
  • Antibacterial effective, high performanced, novel ZnO embedded composite membranes were obtained by blendig ZnO nanoparticles with polysulfone. IR, TG/DTG, XRD and SEM analysis were performed to characterize structure and morphology of ZnO nanoparticles and composite membranes. Contact angle, EWC, porosity and pore structure properties of composite membranes were investigated. Cross-flow filtration studies were performed to investigation of performances of prepared membranes. It was found from the cross section SEM images that ZnO nanoparticles dispersed homogenously up to additive amount of 2% and the membrane skin layer thicknesses increased in the presence of ZnO. Contact angle of pure PSf membranes were reduced from $70^{\circ}$ to $55^{\circ}$ after addition of 4% ZnO. Porosity of composite membrane contains 1% ZnO was higher about 22% than pure PSf membrane. BSA rejection ratio and PWF of 0.5% ZnO embedded composite membrane became 2.2 and 2.3 times higher than pure PSf membrane. It was determined from flux recovery ratios that ZnO additive increased the fouling resistance of composite membranes. Also, the bacterial killing ability of ZnO is well known and there are many researches related to this in the literature. Therefore, it is expected that prepared composite membranes will show antibacterial effect.

Microstructure Properties of High Strength Concrete Utilizing EVA with Micro Particles (EVA 마이크로 입자를 활용한 고강도 콘크리트의 미세구조특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.97-101
    • /
    • 2005
  • High strength concretes utilizing EVA with micro particles were prepared by varying polymer/binder mass ratio and curing conditions with a constant water/binder mass ratio of 0.3. The EVA modified concretes on the compressive and flexural strength, microstructure, ultrapulse modulus in curing condition(dry and water curing) were studied. Also, scanning electron microscope analysis(SEM) was performed to reveal the presence of polymer film and cement hydrates in the concrete. The compressive strength of the EVA modified concretes cured at water conditions ere higher than that of the EVA modified concretes cured at dry conditions. But, the flexural strength of the specimens cured at dry conditions were higher than that of the specimens cured at water conditions. Due to the interaction of the cement hydrates and polymer film, an interpenetrating network originated in which the aggregates were embedded. The curing of the polymer modified concrete involves two step of cement hydrates and polymer modification, and cement hydrates was promoted in water conditions and polymer film formation take place when water evaporates and was thereby was favored in dry conditions. By SEM analysis, influences of polymer modification was strengthening of the transition zone between the aggregate and the paste, and the porosity of transition zone decreases. By spring analysis, it could known that polymer film affects in porosity decrease and strengthening of transition zone.

  • PDF

The Effect of Processing Variables and Composition on the Nitridation Behavior of Silicon Powder Compact

  • Park, Young-Jo;Lim, Hyung-Woo;Choi, Eugene;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.472-478
    • /
    • 2006
  • The effect of compositional and processing variables on a nitriding reaction of silicon powder compact and subsequent post sintering of RBSN (Reaction-Bonded Silicon Nitride) was investigated. The addition of a nitriding agent enhanced nitridation rate substantially at low temperatures, while the formation of a liquid phase between the nitriding agent and the sintering additives at a high temperature caused a negative catalyst effect resulting in a decreased nitridation rate. A liquid phase formed by solely an additive, however, was found to have no effect on nitridation for the additive amount used in this research. The original site of a decomposing pore former was loosely filled by a reaction product ($Si_3N_4$), which provided a specimen with nitriding gas passage. For SRBSN (Sintered RBSN) specimens of high porosity, only a marginal dimensional change was measured after post sintering. Its engineering implication for near-net shaping ability is discussed.

Clay adsorptive membranes for chromium removal from water

  • Kashaninia, Fatemeh;Rezaie, Hamid Reza;Sarpoolaky, Hossein
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.259-264
    • /
    • 2019
  • Cost effective clay adsorptive microfiltration membranes were synthesized to remove Cr (III) from high polluted water. Raw and calcined bentonite were mixed in order to decrease the shrinkage and also increase the porosity; then, 20 wt% of carbonate was added and the samples, named B (without carbonate) and B-Ca20 (with 20 wt% calcium carbonate) were uniaxially pressed and after sufficient drying, fired at $1100^{\circ}C$ for 3 hours. Then, physical and mechanical properties of the samples, their phase analyses and microstructure and also their ability for Cr(III) removal from high polluted water (including 1000 ppm Cr (III) ions) were studied. Results showed that the addition of calcium carbonate lead the porosity to increase to 33.5% while contrary to organic pore formers like starch, due to the formation of wollastonite, the mechanical strength not only didn't collapse but also improved to 36.77 MPa. Besides, sample B-Ca20, due to the presence of wollastonite and anorthite, could remove 99.97% of Cr (III) ions. Hence, a very economic and cost effective combination of membrane filtration and adsorption technology was achieved for water treatment which made microfiltration membranes act even better than nanofiltration ones without using any adsorptive nano particles.

Nonlinear thermal post-buckling behavior of graphene platelets reinforced metal foams conical shells

  • Yin-Ping Li;Lei-Lei Gan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.383-391
    • /
    • 2024
  • Conical shell is a common engineering structure, which is widely used in machinery, civil and construction fields. Most of them are usually exposed to external environments, temperature is an important factor affecting its performance. If the external temperature is too high, the deformation of the conical shell will occur, leading to a decrease in stability. Therefore, studying the thermal-post buckling behavior of conical shells is of great significance. This article takes graphene platelets reinforced metal foams (GPLRMF) conical shells as the research object, and uses high-order shear deformation theory (HSDT) to study the thermal post-buckling behaviors. Based on general variational principle, the governing equation of a GPLRMF conical shell is deduced, and discretized and solved by Galerkin method to obtain the critical buckling temperature and thermal post-buckling response of conical shells under various influencing factors. Finally, the effects of cone angles, GPLs distribution types, GPLs mass fraction, porosity distribution types and porosity coefficient on the thermal post-buckling behaviors of conical shells are analyzed in detail. The results show that the cone angle has a significant impact on the nonlinear thermal stability of the conical shells.

A Study on occurrence of porosity and leakage of mercury in dental amalgam's inside (치과용 아말감 내부의 수은 유출과 기포의 발생에 관한 연구)

  • Kim, Joo-Won
    • Journal of Korean society of Dental Hygiene
    • /
    • v.10 no.3
    • /
    • pp.531-540
    • /
    • 2010
  • Objectives : In this study, following the cavity restorations with low copper conventional alloy, high copper admixed one and high copper unicompositional one, which are used the most frequently in a clinical setting at the present, to experiment the time-dependent changes of strength, bubbles were examined. Besides, to examine the detrimental effects of mercury contained in dental amalgam, the amount of mercury release was evaluated. Methods : As dental amalgams which were used herein, [BESTALOY], [Hi-Aristaloy 21] and [Sybraloy] were selected for a low-copper conventional amalgam, a high-copper admixed one and a high-copper unicompositional one in the corresponding order. The formation of bubbles and the weight ratio of mercury release were evaluated using a field emission scanning electron microscope (FE-SEM). Thus, the following results were obtained: Results : 1. The time-dependent amount of mercury release reached a statistical significance in three types of alloys, which was shown in such a descending order as [BESTALOY], [Hi-Aristaloy 21] and [Sybraloy]. 2. A low-copper conventional type, BESTALOY is a cutting type and it was found to have an increased formation of fine bubbles. In the remaining two types, [Hi-Aristaloy 21] (a high-copper admixed alloy) and [Sybraloy] (a high-copper unicompositional alloy), the time-dependent changes in the formation of bubbles was negligible. Conclusions : Accordingly, this type of mercury release from amalgam alloy denotes the difference in the weight ratio of total constituents between after 24 hours and after two weeks. But further studies are warranted to examine the amount of mercury release which is detrimental to human bodies. Besides, a low-copper conventional alloy is a cutting type and it was characterized by the abundant formation of bubbles in a time-dependent manner. This implies that the strength of amalgam is impaired, which should be considered in selecting the appropriate amalgam alloy in a clinical setting.

A Study on the Properties of Mortar With Particle Size of Blast Furnace Slag Powder and Curing Methods (고로슬래그미분말의 입도와 양생방법에 따른 모르터 물성에 관한 연구)

  • 김승진;박유진;조재우;김영근;김대영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.191-194
    • /
    • 1999
  • Recently in Korea, may workers have reported the effects of the granulated blast furnace slag[BFS] of high fineness on the strength development of slag cement. We have studied the effect of slag fineness on the strength development of mortar with curing conditions, in order to get the basic data of high strength concrete using BFS. In this paper, we discussed the effects of slag fineness and porosity of mortar and the reaction of slag in hardened slag cement.

  • PDF

Powder Preparation and Sintering Properties of PZT-Ceramics by Coprecipitation (공침법에 의한 PZT의 분체제조 및 소결특성)

  • 안영필;김복희;이병우
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.54-58
    • /
    • 1988
  • In order to depress PbO vaporization during calcination and improve sinterability in low temperature, a method for preparing homogeous Lead-Zirconate-Titanate (PZT) powder from aqueous salt solution by precipitation is described. In this method, single phae PZT fine powders are formed at above 500$^{\circ}C$. PZT-ceramics using these powders have high sinterability, and good sintering characteristics relatively low temp. (-high apparent density, low porosity, low water adsorption etc.)

  • PDF

Formation and humidity-sensing properties of porous silicon oxide films by the electrochemical treatment (전기화학적 처리에 의한 다공질 실리콘 산화막의 형성과 감습 특성)

  • 최복길;민남기;류지호;성영권
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.93-99
    • /
    • 1996
  • The formation properties and oxidation mechanism of electrochemically oxidized porous silicon(OPS) films have been studied. To examine the humidity-sensitive properties of OPS films, surface-type and bulk-type humidity sensors were fabricated. The oxidized thickness of porous silicon layer(PSL) increases with the charge supplied during electrochemical humidity sensor shows high sensitivity at high relative humidity in low temperature. The sensitivity and linearity can be improved by optimizing a porosity of PSL. (author). refs., figs.

  • PDF