• Title/Summary/Keyword: high performance steel fiber concrete

Search Result 299, Processing Time 0.024 seconds

A comparative study on the mechanical properties of ultra early strength steel fiber concrete

  • Yi-Chun Lai;Ming-Hui Lee;Yuh-Shiou Tai
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.255-267
    • /
    • 2023
  • The production of ultra-early-strength concrete (UESC) traditionally involves complexity or necessitates high-temperature curing conditions. However, this study aimed to achieve ultra-early-strength performance solely through room-temperature curing. Experimental results demonstrate that under room-temperature (28℃) curing conditions, the concrete attained compressive strengths of 20 MPa at 4 hours and 69.6 MPa at 24 hours. Additionally, it exhibited a flexural strength of 7.5 MPa after 24 hours. In contrast, conventional concrete typically reaches around 20.6 MPa (3,000 psi) after approximately 28 days, highlighting the rapid strength development of the UESC. This swift attainment of compressive strength represents a significant advancement for engineering purposes. Small amounts of steel fibers (0.5% and 1% by volume, respectively) were added to address potential concrete cracking due to early hydration heat and enhance mechanical properties. This allowed observation of the effects of different volume contents on ultra-early-strength fiber-reinforced concrete (UESFRC). Furthermore, the compressive strength of 0.5% and 1% UESFRC increased by 16.3% and 31.3%, respectively, while the flexural strength increased by 37.1% and 47.9%. Moreover, toughness increased by 58.2 and 69.7 times, respectively. These findings offer an effective solution for future emergency applications in public works.

Tension Stiffening of High Performance Fiber-Reinforced Cementitious Composites (고인성 섬유보강 시멘트 복합체의 인장강성)

  • Yun Hyun-Do;Yang Il-Seung;Han Byung-Chan;Hiroshi Fukuyama;Cheon Esther;Kim Sun-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.441-444
    • /
    • 2004
  • This paper presnets the tensile behavior of 8 high performance fiber-reinforced cementitious composites (HPFRCCs) members, each reinforced with one deformed bar 16mm in diameter. The variables included HPFRCC(Ductal, steel cord and polyethylene hybrid fiber, PE fiber) versus normal concrete. Fibers used in HPFRCC significantly increased tensile strength, ductility, and tension stiffening of cementitious materials. For HPFRCC, after first cracking, tensile load continue to rise without fracture localization. Sequentially developed parallel cracks contributed to the inelastic strain at increasing stress level. After yielding of the reinforcing bars, HPFRCC showed increases in loads with increasing strains.

  • PDF

Characteristic of Microcracks with Mixing Proportional Properties of Concrete (미세균열이 콘크리트의 염소이온 침투에 미치는 영향 III; 배합조건 특성에 따른 미세균열의 특성)

  • Yoon, In-Seok;Kim, Young-Geun;Park, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.469-475
    • /
    • 2008
  • It is obvious that chloride penetration through cracks can threaten the durability of concrete substantially, according to the previous studies of author. It was proposed that crack depth corrseponded with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It is now necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. The purpose of this study is examining the effect of mix proportional features of concrete such as coarse aggregate, high strengtherize of concrete and reinforcement of steel fiber on chloride penetration through cracks. Although small size of coarse aggregate can lead to many microcracks in concrete, the cracks should not impact on chloride penetration directly. On the contrary, chloride should penetrate through cracks easily in concrete with a large size of coarse aggregate because mixrocracks are connected to each other. Second, high strength concrete has an excellent performance to resist with chloride penetration. However, for cracked high strength concrete, its performance is reduced upto the level of ordinary concrete. Finally, steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly.

An Behavior of RC Columns Using High Performance Fiber Reinforced Cement Composites under Axial Loads (일정축력을 받는 고인성 섬유보강 시멘트 복합체 기둥의 거동)

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Yang Il-Seung;Cheon Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.87-90
    • /
    • 2005
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SC) and Polyethylene (PE), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

An Experimental Study on RC Columns Using High Performance Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체를 사용한 콘크리트 기둥의 실험적 연구)

  • Hwang Sun-Kyoung;Yun Hyun-Do;Han Byung-Chan;Park Wan-Shin;Jeon Esther;Yang Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.631-634
    • /
    • 2004
  • An experimental investigation on the strength and behaviour of reinforced concrete columns using high performance fiber reinforced cement composites has been carried out. The columns were subjected to monotonic axial compression until failure. The variables in this study are the combination ratio of steel cord(SCI) and polypropylene(PP), and the volumetric ratio of transverse reinforcement Test results showed that the fibers, when used in a hybrid form, could result in superior composite performance compared to their individual fiber reinforced cement composites.

  • PDF

Fire Test of Fiber Cocktail Reinforced High Strength Concrete Columns with Loading (섬유혼입공법을 적용한 고강도콘크리트 기둥의 재하 내화시험)

  • Youm, Kwang-Soo;Jeon, Hun-Kyu;Kim, Heung-Youl
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.473-480
    • /
    • 2009
  • The 180 minutes fire test based on the standard curve of ISO-834 were conducted on three RC column specimens with different constant axial loading ratios to evaluate the fire performance of fiber cocktail (polypropylene+steel fiber) reinforced high strength concrete column. The columns were tested under three loading levels as 40%, 50%, and 61% of the design load. No explosive spalling has been observed and the original color of specimen surface has been changed to light pinkish grey. The maximum axial displacements of three specimens were 1.5~2.2 mm. There was no reduction in load bearing capacity of each specimen exposed to fire and no effect were observed on the fire performance within 61% of the design load. The tendencies of the results with loading, such as the temperature distribution of in concrete and the changes in temperature rise due to the water vaporization in concrete, are very similar to those without loading. The final temperatures of steel rebar after 180 minutes of fire test resulted in 491.4${^{\circ}C}$ for corner rebar, 329.0${^{\circ}C}$ for center rebar, and 409.8${^{\circ}C}$ for total mean of steel rebar. The difference of mean temperature between corner and center rebar was 153.7${^{\circ}C}$ㅍ. The tendency of temperature rise in concrete and steel rebar changed after 30~50 minutes from the starting time of the fire test because the heat energy influx into corner rebar is larger than that into center rebar. The cause of decrease in temperature rise was due to the water vaporization in concrete, the lower temperature gradient of the concrete with steel and polypropylene fiber cocktails, the moisture movement toward steel rebars and the moisture clogging.

A Study on the Spalling Properties of High Strength Concrete Using Synthetic Fiber (유기섬유를 혼입한 고강도 콘크리트의 폭렬 특성에 관한 실험적 연구)

  • Jeon, Chan Ki;Jeon, Joong Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.1
    • /
    • pp.18-26
    • /
    • 2012
  • Accordingly architectural structure is getting high-rise and bigger, a use of high strength and high performance concrete has been increasing. High performance concrete has cons of explosion in a fire. This Explosion in the fire can cause the loss of the sheath on a concrete surface, therefore it effects that increasing a rate of heat transmission between the steel bar and inner concrete. Preventing this explosion of high performance concrete in the fire, many kinds of researches are now in progressing. Typically, researches with using Polypropylene-fiber and Steel-fiber can prove controling the explosion, but the reduction of mobility was posed as a problem of workability. Consequently, to solve the problem as mentioned above, concrete cans secure fire resisting capacity through the using of coating liquid, including Ester-lubricant and non-ionic characteristic surfactant. This research has been drawn a ideal condition in compressive strength areas of concrete by an experiment. When applying 13mm of polyamide-fiber, proper fiber mixing volume by compressive strength areas of concrete is $0.8kg/m^3$ in 60MPa, $1.0kg/m^3$ in 80MPa, $1.5kg/m^3$ in $100MPa/m^3$. These amount of a compound can control the explosion.

Strength and Ductility of Steel Fiber Reinforced Composite Beams without Shear Reinforcements (전단보강근이 없는 강섬유 보강 합성보의 강도 및 연성 능력)

  • Oh, Young-Hun;Nam, Young-Gil;Kim, Jeong-Hae
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.103-111
    • /
    • 2007
  • Experimental study was carried out to investigate the structural performance of composite beams with steel fiber concrete and angle. For this purpose, seven specimens composed of two RC beams with or without steel fiber and five composite beams with steel fiber and angle were constructed and tested. All specimens had no web shear reinforcement. Main variables for the specimens were tensile reinforcement ratio and fiber volume fraction. Based on the test results, structural performance such as strength, stiffness, ductility and energy dissipation capacity was evaluated and compared with the predicted strength. The prediction of flexure and shear strength gives a good relationship with the observed strength. The strength, ductility and energy dissipation capacity are increased, as the fiber volume fraction is increased. Meanwhile, high tensile reinforcement ratio resulted in the reduction of ductility and energy dissipation capacity for the composite beams.

Evaluation of Impact Resistance of Steel Fiber and Organic Fiber Reinforced Concrete and Mortar

  • Kim, Gyu-Yong;Hwang, Heon-Kyu;Nam, Jeong-Soo;Kim, Hong-Seop;Park, Jong-Ho;Kim, Jeong-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.377-385
    • /
    • 2012
  • In this study, the Impact resistance of steel fiber and organic fiber reinforced concrete and mortar was evaluated and the improvement in toughness resulting from an increase in compressive strength and mixing fiber for impact resistance on performance was examined. The types of fiber were steel fiber, PP and PVA, and these were mixed in at 0.1, 0.5 and 1.0 vol.%, respectively. Impact resistance is evaluated with an apparatus for testing impact resistance performance by high-speed projectile crash by gas-pressure. For the experimental conditions, Specimen size was $100{\times}100{\times}20$, 30mm ($width{\times}height{\times}thickness$). Projectile diameter was 7 and 10 mm and impact speed is 350m/s. After impact test, destruction grade, penetration depth, spalling thickness and crater area were evaluated. Through this evaluation, it was found that as compressive strength is increased, penetration is suppressed. In addition, as the mixing ratio of fiber is increased, the spalling thickness and crater area are suppressed. Organic fibers have lower density than the steel fiber, and population number per unit area is bigger. As a result, the improvement of impact resistance is more significant thanks to dispersion and degraded attachment performance.

Evaluation of Advanced Ductility of Ultra High Performance Concrete with Hybrid type of Steel Fiber (하이브리드 강섬유 사용에 따른 초고성능 콘크리트의 인성 향상 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kang, Hyun-Jin;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.437-438
    • /
    • 2010
  • This study was carry out to evaluate the effect of flexural behavior according to using hybrid steel fiber in UHPC. The evaluation of the flexural behavior of UHPC using hybrid fibers showed that the admixing of hybrid steel fibers at a volumic ratio of 2% increased the flexural strength by more than 27% (maximum 50%) compared to the use of steel fibers only. A ratio of 1.5% was seen to provide flexural strength exceeding the current strength of UHPC.

  • PDF