• Title/Summary/Keyword: high molecular film

Search Result 216, Processing Time 0.027 seconds

Fully Rod-like Aromatic Polyimides: Structure, Properties, and Chemical Modifications

  • Moonhor Ree;Shin, Tae-Joo;Lee, Seung-Woo
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.1-19
    • /
    • 2001
  • Poly(p-phenylene pyromellitimide) and poly(4,4'-biphenylene pyromellitimide) are representatives of fully rod-like polyimides. Their structure and properties in thin films are reviewed. The polymers exhibit some excellent properties such as high molecular packing coefficient, high mechanical modulus, and low thermal expansion coefficient, and low interfacial stress, so that they are very attractive to both industry and academia. However, these polymers are very brittle and thus practically useless. Some chemical modifications to improve such drawback with a little sacrifice of the high modulus are described: i) incorporation of short side groups into the polymer backbone and ii) insertion of proper linkages into the polymer backbone.

  • PDF

Epitaxial Growth of Polyurea Film by Molecular Layer Deposition

  • Choe, Seong-Eun;Gang, Eun-Ji;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.2-264.2
    • /
    • 2013
  • Molecular layer deposition (MLD) is sequential, self-limiting surface reaction to form conformal and ultrathin polymer film. This technique generally uses bifunctional precursors for stepwise sequential surface reaction and entirely organic polymer films. Also, in comparison with solution-based technique, because MLD is vapor-phase deposition based on ALD, it allows epitaxial growth of molecular layer on substrate and is especially good for surface reaction or coating of nanostructure such as nanopore, nanochannel, nanwire array and so on. In this study, polyurea film that consisted of phenylenediisocyanate and phenylenediamine was formed by MLD technique. In situ Fourier Transform Infrared (FTIR) measurement on high surface area SiO2 substrate was used to monitor the growth of polyurethane and polyurea film. Also, to investigate orientation of chemical bonding formed polymer film, plan-polarized grazing angle FTIR spectroscopy was used and it showed epitaxial growth and uniform orientation of chemical bones of polyurea films.

  • PDF

Studies on the Syndiotactic Poly(vinyl alcohol) Polarizing Film -Iodine Desorption Behavior of High Molecular Weight Syndiotactic Poly(vinyl alcohol)/Iodine Complex Film- (신디오탁틱 폴리비닐알코올 편광필름에 관한 연구 - 고분자량 신디오탁틱 폴리비닐알코올/요오드 복합체 필름의 요오드 탈착 거동 -)

  • Lyoo, Won-Seok;Yeum, Jeong-Hyun;Choi, Jin-Hyun;Ji, Byung-Chul;Yoon, Won-Sik;Noh, Tae-Hwan;Ghim, Han-Do;Kim, Jae-Pil
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2001
  • High molecular weight syndiotactic poly(vinyl alcohol)(HMW s-PVA) with number-average degree of polymerization of 10000 and syndiotactic diad content of 61.5%/iodine complex film was prepared. Its adsorption and desorption behaviors of iodine in hot water were investigated. In comparison with atactic PVA film or low molecular weight s-PVA film, the degree of solubility of s-PVA film and the iodine desorption of HMW s-PVA/iodine film in hot water were limited to an extremely lower level. As the soaking time increased, the iodine desorption in hot water was increased. This reason might be explained by the fact that as the soaking time increased, so the iodine adsorption increased not by the stable molecular complex between PVA and iodine but by the simple physical adsorption of iodine.

  • PDF

High Molecular Weight Conjugated Polymer Thin Films with Enhanced Molecular Ordering, Obtained via a Dipping Method

  • Park, Yeong Don
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3340-3344
    • /
    • 2013
  • The fabrication of polymer field-effect transistors with good electrical properties requires the minimization of molecular defects caused by low molecular weight (MW) fractions of a conjugated polymer. Here we report that the electrical properties of a narrow bandgap conjugated polymer could be dramatically improved as a result of dipping a thin film into a poor solvent. The dipping time in hexanes was controlled to efficiently eliminate the low molecular weight fractions and concomitantly improve the molecular ordering of the conjugated polymer. The correlation between the structural order and the electrical properties was used to optimize the dipping time and investigate the effects of the low MW fraction on the electrical properties of the resulting thin film.

Fabrication of Organic-Inorganic Hybrid Thin Film by Molecular Layer Deposition

  • Han, Gyu-Seok;Kim, Su-Hwan;Han, Gi-Bok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.251-251
    • /
    • 2010
  • Organic-inorganic hybrid materials have attracted because of its combined properties, such as flexibility and high electrical performance. In addition, the hybrid materials are expected to have synergic effect which are not shown in just one component. Here, we fabricated organic-inorganic hybrid thin film. Organic-inorganic hybrid thin film have been deposited from diethyl zinc and 1, 2, 4-trihydroxybenzene (THB) by molecular layer deposition (MLD). UV-VIS, Using Infrared spectrum and X-ray photoelectron spectroscopy confirm that Zinc and THB hybrid film (ZnTHB) consist of Zn-O and THB - oxide units and the micro structure and composition of hybrid film. hat the sequential surface reactions of diethyl zinc and ethylene glycol are sufficiently self-limiting and saturating to enable well-controlled MLD growth. Transmission electron microscopy image shows lamination growth of ZnTHB film according to cycle.

  • PDF

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation (분자 동역학 전산모사에 의한 비정질 탄소 필름의 합성거동 연구)

  • 이승협;이승철;이규환;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.

Nanopore Generation in Low Dielectric Organosilicate and SiCOH Thin Films

  • Heo, Kyu-Young;Yoon, Jin-Hwan;Jin, Kyeong-Sik;Jin, Sang-Woo;Oh, Kyoung-Suk;Choi, Chi-Kyu;Ree, Moon-Hor
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.298-298
    • /
    • 2006
  • There has been much interest in incorporating nanoscale voids into dielectric materials in order to reduce their k value, and thus in producing low-k porous interdielectric materials. One approach to the development of low-k dielectric materials is the templated polycondensation of organosilicate precursors in the presence of a thermally labile, organic polymeric porogen. The other is SiOCH films have low dielectric constant as well as good mechanical strength and high thermal stability through PECVD. In this article we explore the nanopore generation mechanism of organosilicate film using star-shape porogen and SiOCH film using bis-trimethylsilylmethane (BTMSM) precursor.

  • PDF

Polyester Film Laminating Technology for Chip Condenser

  • Lee, Yun Dai;Son, Yang Soo;Ahn, Joong Geol
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2004
  • Biaxially oriented polyethylene terephthalate copolymer(BO - PET)film laminated aluminiums have been applied for chip condenser case. The BO PET film is characterized by high molecular which gives high corrosion resistance, good adhesion and high heat resistance. The higher orientation lowers formability of the film. So, optimum orientation has to be controlled during the laminating process. And to confirm the adhesion between BO PET and aluminium and to guarantee the formability of PET laminated aluminums, we have controlled the chromium oxides weight on the aluminium and laminating condition ( laminating temperature, soaking temperature and lag time after nip roll and quenching conditions) This paper discusses the effect of the laminating conditions on the formability of laminated aluminums. As results, it is clear that the orientation of the BO PET film decreased with an increase in the strip temperature. When the film temperature is over the melting point of the film, its orientation drastically decreased.

Molecular Dynamics Study on Evaporation Process of Adherent Molecules on Surface by High Temperature Gas

  • Yang, Young-Joon;Osamu Kadosaka;Masahiko Shibahara;Masashi Katsuki;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2104-2113
    • /
    • 2004
  • Surface degreasing method with premixed flame is proposed as the removal method of adherent impurities on materials. Effects of adherent molecular thickness and surface potential energy on evaporation rate of adherent molecules and molecular evaporation mechanism were investigated and discussed in the present study. Evaporation processes of adherent molecules on surface molecules were simulated by the molecular dynamics method to understand thermal phenomena on evaporation processes of adherent molecules by using high temperature gas like burnt gas. The calculation system was composed of a high temperature gas region, an adherent molecular region and a surface molecular region. Both the thickness of adherent molecules and potential parameters affceted the evaporation rate of adherent molecules and evaporation mechanism in molecular scale.

Numerical Simulation for Generation of Homogeneous Thin-Film in Spray Deposition (분무증착에서 균일 박막형성을 위한 전산모사)

  • Jeong, Heung-Cheol;Go, Sun-Mi;Choi, Gyung-Min;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2702-2707
    • /
    • 2007
  • The purpose of this study is to calculate the behavior of molecules for the generation of homogeneous thin-films in the process of spray deposition. The calculation system was composed of a suface molecular region and droplet molecular region. The thin-film was generated when droplet molecules fell to surface molecules. Lennard-Jones potential had been used as intermolecular potential, and only attraction 때 d repulsion had been used for the behavior of the droplet on the solid surface. As results, the behavior of the droplet was so much influenced by the surface temperature in the spray deposition process. High temperature of surface has higher porosity and larger spread area. It was found that simulation results generally agreed well with previous the experimental results. This simulation result will be the foundation for the deposition processes of industry.

  • PDF