• Title/Summary/Keyword: high hole mobility

Search Result 62, Processing Time 0.027 seconds

DC and RF Characteristics of $Si_{0.8}Ge_{0.2}$ pMOSFETs: Enhanced Operation Speed and Low 1/f Noise

  • Song, Young-Joo;Shim, Kyu-Hwan;Kang, Jin-Young;Cho, Kyoung-Ik
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.203-209
    • /
    • 2003
  • This paper reports on our investigation of DC and RF characteristics of p-channel metal oxide semiconductor field effect transistors (pMOSFETs) with a compressively strained $Si_{0.8}Ge_{0.2}$ channel. Because of enhanced hole mobility in the $Si_{0.8}Ge_{0.2}$ buried layer, the $Si_{0.8}Ge_{0.2}$ pMOSFET showed improved DC and RF characteristics. We demonstrate that the 1/f noise in the $Si_{0.8}Ge_{0.2}$ pMOSFET was much lower than that in the all-Si counterpart, regardless of gate-oxide degradation by electrical stress. These results suggest that the $Si_{0.8}Ge_{0.2}$ pMOSFET is suitable for RF applications that require high speed and low 1/f noise.

  • PDF

2DEG Calculation in InP HEMT (InP HEMT의 2DEG계산)

  • Hwang, K.C.;Ahn, H.K.;Han, D.Y.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.316-318
    • /
    • 2003
  • 양자우물 구조를 사용한 HEMT(High Electron Mobility Transistor)는 고속 스위칭 소자와 초고주파 통신용 소자 및 센서에에 우수한 동작특성을 갖고 있다. 본 논문에서는 AlInAs/InP HEMT의 heterostructure를 파동방정식과 Poisson 방정식을 self-consistent 한 방법으로 해석하였다. 파동방정식으로 junction의 전자농도를 계산하고, Poisson 방정식을 해석하여 potential profile에 의한 전자 농도가 heterostructure에서 self-consistent가 되도록 연산하였다. 끝으로 AlInAs/InP 구조에서 positively ionized donor, valance band에서의 hole, conduction band의 free electron과 구조내의 2DEG를 AlGaAs/GaAs 및 AlGaAs/InGaAs/GaAs와 비교하였다.

  • PDF

Development of Smart Tendon Instrumented with Optical FBG Sensors (FBG 센서를 내장한 스마트 강연선 개발)

  • Kim, Jae-Min;Kim, Young-Sang;Kim, Hyoun-Wo;Seo, Dong-Nam;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.33-38
    • /
    • 2007
  • This paper reports an attempt to develop 7-wire steel tendon which is instrumented with optical FBG sensors. The tendon is devised to replace the king cable, which is located in the center of the tendon, by a steel tube in which the FBG sensor are attached along the hole using a high-mobility polyester resin. The circular steel tube has typical of 5 mm outer diameter and 1 mm inner diameter, and can easily be manufactured by means of an pultrusion process. Using the tube, in this study, three different types of one meter-long smart tendons are fabricated depending on mixture ratio of polyester resin and initiator. The performance of the FBG sensors as well as mechanical characteristics of the prototype are tested through the tensile test. Test results shows that the proposed smart tendon is in principle very effective for measuring the working strain of the tendon.

  • PDF

New p-type Organic Semiconducting Materials for Organic Transistor (유기트랜지스터용 p-type 유기반도체 개발)

  • Kang In-Nam;Lee Ji-Hoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.558-562
    • /
    • 2006
  • We have synthesized a new p-type polymer, poly(9,9'-n-dioctylfluorene-alt-phenoxazine) (PFPO), via the palladium catalyzed coupling reaction. The number average molecular weight ($M_n$) of PFPO was found to be 23,000. PFPO dissolves in common organic solvents such as chloroform and toluene. The UV-visible absorption maximum of the PFPO thin film is clearly blue-shifted with respect to that of F8T2, poly-(9,9'-n-dioctylfluorene-alt-bithiophene). The introduction of the phenoxazine moiety into the polymer system results in better field-effect transistor (FET) performance than that of F8T2. A solution processed PFPO TFT device with a top contact geometry was found to exhibit a hole mobility of $2.7{\times}10^{-4}cm^2/Vs$ and a low threshold voltage of -2 V with high on/off ratio(${\sim}10^4$).

A Review of Electronic Devices Based on Halide Perovskite Materials (할라이드 페로브스카이트 소재를 이용한 전자 소자에 관한 리뷰)

  • Hyeong Gi Park;Jungyup Yang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.519-526
    • /
    • 2024
  • This review examines the use of halide perovskite materials in electronic devices, highlighting their exceptional optoelectronic properties and the challenges associated with them. Despite their potential for high-performance devices, practical applications are limited by sensitivity to environmental factors such as moisture and oxygen, etc. We discuss advances in enhancing stability and operational reliability, featuring innovative synthesis methods and device engineering strategies that help mitigate degradation. Furthermore, we explore the integration of perovskites in applications such as field-effect transistors and LEDs, emphasizing their transformative potential. This review also outlines future research directions, stressing the need for ongoing improvements in material stability and device integration to fully realize the commercial potential of perovskites.

Study of the electrical propety for $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$((001) with a direct gap (직접천이 띠간격을 갖는 $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$(001)의 전기적 특성 연구)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.989-995
    • /
    • 2000
  • G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ is a very promising material for the high-speed device due to the fact that electron and hole mobilities for the strained G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ are greatly enhanced. Because G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ has a direct band gap for the proper combination of x and y, it can be applied to the optoelectronic device. Therefore, the study of the electrical property for G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$(001) with a direct energy gap is needed. G $e_{1-x}$ S $n_{x}$ layer can not be grown thickly due to the large difference of lattice constants. This fact prefers the structure of the device where electrons and holes move in the plane direction. The transverse mobilities of electron and hole for G $e_{0.8}$S $n_{0.2}$Ge(001) are 2~3 times larger than those for Ge/Ge/ sub0.8/S $n_{0.2}$(001). Therefore, G $e_{0.8}$S $n_{0.2}$Ge(001) is expected to be better than Ge/G $e_{0.8}$S $n_{0.2}$(001) for the development of the high-speed device.h-speed device.device.h-speed device. device.

  • PDF

High-energy Proton Irradiated Few Layer Graphene Devices (고에너지 양성자에 의해 결함을 증가시킨 그래핀 소자의 전기적 특성 변화 연구)

  • Kim, Hong-Yeol;Kim, Ji-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.297-300
    • /
    • 2011
  • High energy proton irradiations were performed on graphene devices to increase the number of defects intentionally. Proton energy and fluence were 6 MeV and $5{\times}10^{15}\;cm^{-2}$, respectively. The defects in few layer graphene layer created by proton irradiations captured oxygen molecules that acted as p-type dopants. After the vacuum annealing, hole mobility was enhanced by the recovery of the defects and the desorption of the oxygen molecules. However, the drain current decreased after vacuum annealing due to the removal of the dopant molecules.

Design of a Monolithic Photoelectrochemical Tandem Cell for Solar Water Splitting with a Dye-sensitized Solar Cell and WO3/BiVO4 Photoanode

  • Chae, Sang Youn;Jung, Hejin;Joo, Oh-Shim;Hwang, Yun Jeong
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.82-85
    • /
    • 2015
  • Photoelectrochemical cell (PEC) is one of the attractive ways to produce clean and renewable energy. However, solar to hydrogen production via PEC system generally requires high external bias, because of material's innate electronic band potential relative to hydrogen reduction potential and/or charge separation issue. For spontaneous photo-water splitting, here, we design dye-sensitized solar cell (DSSC) and their monolithic tandem cell incorporated with a $BiVO_4$ photoanode. $BiVO_4$ has high conduction band edge potential and suitable band gap (2.4eV) to absorb visible light. To achieve efficient $BiVO_4$ photoanode system, electron and hole mobility should be improved, and we demonstrate a tandem cell in which $BiVO_4/WO_3$ film is connected to cobalt complex based DSSC.

Synthesis of Novel Asymmetric Oligomers Based on Benzothiophene and OTFT Characteristics (벤조사이오펜을 기초로 한 새로운 비대칭형 올리고머의 합성과 OTFT 특성)

  • Lee, Dong-Hee;Park, Jong-Won;Chung, Dae-Sung;Park, Chan;Kim, Yun-Hi;Kwon, Soon-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.129-129
    • /
    • 2010
  • The conjugated oligomers with rigid and fused-ring structures are of interest for the solution-processable organic thin film transistors (OTFTs) due to their well defined structure and high purity. In this study, alkyl substituted benzothiophene based oligomers were synthesized by a novel route, the key point of which is the acid-induced intermolecular cyclization reaction of aromatic methyl sulfoxides, and were confirmed by $^1H$-NMR and FT-IR studies. The obtained oligomers showed the good solubility in common organic solvents such as hexane, chloroform, and dimethylchloride at room-temperature, which is due to the introduced alkyl chain. The physical and optical properties of the oligomers were studied using differential scanning scalorimetry (DSC), cyclic-voltammetry (CV), UV-visible and PL spectra studies. Solution processed OTFT device based on synthesized oligomers show a high hole mobility of up to $0.01\;cm^2V^{-1}s^{-1}$, $I_{on}/I_{off}$ of $10^5$ and threshold voltage of -14V.

  • PDF

Dislocations as native nanostructures - electronic properties

  • Reiche, Manfred;Kittler, Martin;Uebensee, Hartmut;Pippel, Eckhard;Hopfe, Sigrid
    • Advances in nano research
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Dislocations are basic crystal defects and represent one-dimensional native nanostructures embedded in a perfect crystalline matrix. Their structure is predefined by crystal symmetry. Two-dimensional, self-organized arrays of such nanostructures are realized reproducibly using specific preparation conditions (semiconductor wafer direct bonding). This technique allows separating dislocations up to a few hundred nanometers which enables electrical measurements of only a few, or, in the ideal case, of an individual dislocation. Electrical properties of dislocations in silicon were measured using MOSFETs as test structures. It is shown that an increase of the drain current results for nMOSFETs which is caused by a high concentration of electrons on dislocations in p-type material. The number of electrons on a dislocation is estimated from device simulations. This leads to the conclusion that metallic-like conduction exists along dislocations in this material caused by a one-dimensional carrier confinement. On the other hand, measurements of pMOSFETs prepared in n-type silicon proved the dominant transport of holes along dislocations. The experimentally measured increase of the drain current, however, is here not only caused by an higher hole concentration on these defects but also by an increasing hole mobility along dislocations. All the data proved for the first time the ambipolar behavior of dislocations in silicon. Dislocations in p-type Si form efficient one-dimensional channels for electrons, while dislocations in n-type material cause one-dimensional channels for holes.