• Title/Summary/Keyword: high energy physics

Search Result 745, Processing Time 0.03 seconds

Reconstruction of Vacancy Defects in Graphene and Carbon Nanotube

  • Lee, Gun-Do;Yoon, Eui-Joon;Hwang, Nong-Moon;Wang, Cai-Zhuang;Ho, Kai-Ming
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.340-340
    • /
    • 2010
  • Various structures of vacancy defects in graphene layers and carbon nanotubes have been reported by high resolution transmission electron microscope (HR-TEM) and those arouse an interest of reconstruction processes of vacancy defects. In this talk, we present reconstruction processes of vacancy defects in a graphene and a carbon nanotube by tight-binding molecular dynamics (TBMD) simulations and by first principles total energy calculations. We found that a structure of a dislocation defect with two pentagon-heptagon (5-7) pairs in graphene becomes more stable than other structures when the number of vacancy units is ten and over. The simulation study of scanning tunneling microscopy reveals that the pentagon-heptagon pair defects perturb the wavefunction of electrons near Fermi level to produce the $\sqrt{3}\;{\times}\;\sqrt{3}$ superlattice pattern, which is in excellent agreement with experiment. It is also observed in our tight-binding molecular dynamics simulation that 5-7 pair defects play a very important role in vacancy reconstruction in a graphene layer and carbon nanotubes.

  • PDF

Soft Lithography of Graphene Sheets Via Surface Energy Modification

  • Kim, Hansun;Jung, Min Wook;Myung, Sung;Jung, Daesung;Lee, Sun Sook;Kong, Ki-Jeong;Lim, Jongsun;Lee, Jong-Heun;Park, Chong Yun;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.144.2-144.2
    • /
    • 2013
  • With the synthesis of graphene sheets as large-scale and high quality, it is essentially important to develop suitable graphene patterning process for future industrial applications. Especially, transfer or patterning method of CVD-grown graphene has been studied. We report simple soft lithographic process to develop easily applicable patterning method of large-scale graphene sheets by using chemically functionalized polymer stamp. Also important applications, the prototype capacitors with graphene electrode and commercial polymer dielectrics for the electrostatic-type touch panel are fabricated using the developed soft lithographic patterning and transfer process.

  • PDF

Electron Pre-acceleration in Weak Quasi-perpendicular Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • Giant radio relics in the outskirts of galaxy clusters have been observed and they are interpreted as synchrotron emission from relativistic electrons accelerated via diffusive shock acceleration (DSA) in weak shocks of Ms < 3.0. In the DSA theory, the particle momentum should be greater than a few times the momentum of thermal protons to cross the shock transition and participate in the Fermi acceleration process. In the equilibrium, the momentum of thermal electrons is much smaller than the momentum of thermal protons, so electrons need to be pre-accelerated before they can go through DSA. To investigate such electron injection process, we study the electron pre-acceleration in weak quasi-perpendicular shocks (Ms = 2.0 - 3.0) in an ICM plasma (kT = 8.6 keV, beta = 100) through 2D particle-in-cell simulations. It is known that in quasi-perpendicular shocks, a substantial fraction of electrons could be reflected upstream, gain energy via shock drift acceleration (SDA), and generate oblique waves via the electron firehose instability (EFI), leading the energization of electrons through wave-particle interactions. We find that such kinetic processes are effective only in supercritical shocks above a critical Mach number, $Ms{\ast}{\sim}2.3$. In addition, even in shocks with Ms > 2.3, energized electrons may not reach high energies to be injected to DSA, because the oblique EFI alone fails to generate long-wavelength waves. Our results should have implications for the origin and nature of radio relics.

  • PDF

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.

Magnetocrystalline Anisotropy of α''-Fe16N2 (α''-Fe16N2의 자기결정이방성)

  • Khan, Imran;Son, Jicheol;Hong, Jisang
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.4
    • /
    • pp.115-118
    • /
    • 2016
  • We investigated the magnetocrystalline anisotropy of pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ by using full-potential linearized augmented plane wave method (FLAPW). A very high magnetic moment was obtained for Fe (4d) site due to the lattice expansion in the z-direction, while the magnetic moment of Fe (4e) and (8h) site were suppressed due to hybridization with neighboring N atom. The calculated spin magnetic moments for different Fe sites (4d, 4e and 8h) were in good agreement with previously reported values. Due to the tetragonal distortion, we found a very large uniaxial anisotropy constant of $0.58MJ/m^3$. Besides, a high value of magnetization of 1.76MA/m was obtained. In additon, the estimated coercive field and maximum energy product of 6.51 kOe and 71.7 MGOe were obtained for pure ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$. This may suggest that the ${\alpha}^{{\prime}{\prime}}-Fe_{16}N_2$ can be utilized for potential rare-earth free permanent magnet material.

Analysis and design of voltage doubling rectifier circuit for power supply of neutron source device towards BNCT

  • Rixin Wang;Lizhen Liang;Congguo Gong;Longyang Wang;Jun Tao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2395-2403
    • /
    • 2024
  • With the rapid development of DC high voltage accelerator, higher requirements have been raised for the design of DC high voltage power supply, requiring more stable high voltage with lower output ripple. Therefore, it also puts forward higher requirements for the parameter design of the voltage doubling rectifier circuit, which is the core component of the DC high voltage power supply. In order to obtain output voltage with better performance, the effects of the working frequency, the stage capacitance and the load resistance on the output voltage of the voltage doubling rectifier circuit are studied in detail by simulation. It can be concluded that the higher the working frequency of the transformer, the larger the stage capacitance, the larger the load resistance and the better the output voltage performance in a certain range. Based on this, a 2.5 MV voltage doubling rectifier circuit driven by a 120 kHz frequency transformer is designed, developed and tested for the power supply of the neutron source device towards BNCT. Experimental results show that this voltage doubling rectifier circuit can satisfy the design requirements, laying a certain foundation for the engineering design of DC high voltage power supply of neutron source device.

Effective Interdiffusion of Co/Pd multilayers

  • Kim, Jai-Young;Jan E. Evetts
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.86-92
    • /
    • 1997
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media in the wavelength of a blue laser beam, due to large Kerr rotation angle. However, since the Co/Pd multilayer is a non-equilibrium state in terms of free energy and MO recording is a kind of thermal recording which is conducted around Curie temperature (Tc) of the recording media, the assessment of the thermal stability in the Co/Pd multilayer is crucially important both for basic research and applications. As the parameter of the thermal stability in this research, effective interdiffusion coefficients (Deff) perpendicular to the interface of the Co/Pd multilayers are measured in terms of Ar sputtering pressure and heat treatment temperature. From the results of the research, we find out that the magnetic exchange energy between Co and Pd sublayers strongly affects Deff of the Co/Pd multilayers. This discovery will provide the understanding of the magnetic exchange energy in the effective interdiffusion process of a magnetic multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF

Temperature dependence of photocurrent spectra for $AgInS_2$ epilayers grown by hot wall epitaxy

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.123-124
    • /
    • 2007
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the liteniture. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The temperature dependence of the energy band gap of the $AgInS_2$ obtained from the photocurrent spectrum was well described by the Varshni's relation, $E_g(T)=\;E_g(0)\;eV-(7.78\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;116\;K\;K)$. Also, Eg(0) is the energy band gap at 0 K, which is estimated to be 2.036 eV at the valence band state A and 2.186 eV at the valence band state B.

  • PDF

A Fast Neutron Time-of-Flight Spectrometer with High Resolution

  • Cho, Mann
    • Nuclear Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.116-131
    • /
    • 1972
  • A fast neutron time-of-flight spectrometer has been constructed with suitable choice of target thickness and proton bombarding energy in Li$^{7}$ (p, n) Be$^{7}$ nuclear reaction for a continuous keV spectrum of neutrons at 0 degree in 1-nsec pulse from a Van do Graaff and a time-pick-up fast neutron detector assembled with a 5 mm-thick 92% enriched B$^{10}$ slab and four heavily shielded 4"$\times$3" NaI scintillation detectors. Energy resolution of this spectrometer is better than 0.3% at 50 keV and the signal-to-background ratio is also improved. Total cross section measurements of several separated single isotopes have been carried out with this spectrometer and analyzed by Rmaxtrix multi-level computer code. The spin values and resonance parameters of each individual resonances are given.

  • PDF

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Cho, Jin Young;Han, Tae Young;Park, Ho Jin;Hong, Ser Gi;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.13-30
    • /
    • 2019
  • This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.