DOI QR코드

DOI QR Code

Improvement and verification of the DeCART code for HTGR core physics analysis

  • Received : 2018.04.12
  • Accepted : 2018.09.04
  • Published : 2019.02.25

Abstract

This paper presents the recent improvements in the DeCART code for HTGR analysis. A new 190-group DeCART cross-section library based on ENDF/B-VII.0 was generated using the KAERI library processing system for HTGR. Two methods for the eigen-mode adjoint flux calculation were implemented. An azimuthal angle discretization method based on the Gaussian quadrature was implemented to reduce the error from the azimuthal angle discretization. A two-level parallelization using MPI and OpenMP was adopted for massive parallel computations. A quadratic depletion solver was implemented to reduce the error involved in the Gd depletion. A module to generate equivalent group constants was implemented for the nodal codes. The capabilities of the DeCART code were improved for geometry handling including an approximate treatment of a cylindrical outer boundary, an explicit border model, the R-G-B checker-board model, and a super-cell model for a hexagonal geometry. The newly improved and implemented functionalities were verified against various numerical benchmarks such as OECD/MHTGR-350 benchmark phase III problems, two-dimensional high temperature gas cooled reactor benchmark problems derived from the MHTGR-350 reference design, and numerical benchmark problems based on the compact nuclear power source experiment by comparing the DeCART solutions with the Monte-Carlo reference solutions obtained using the McCARD code.

Keywords

References

  1. S.G. Hong, N. ZinCho, CRX : a code for rectangular and hexagonal lattices based on the method of characteristics, Ann. Nucl. Energy 25 (1998) 547-565. https://doi.org/10.1016/S0306-4549(97)00113-8
  2. K. Smith, J.D. Rhodes, CASMO-4 characteristic method for two-dimensional PWR and BWR core calculations, in: Trans. Am. Nucl. Soc, 2000, pp. 294-296.
  3. J.Y. Cho, K.S. Kim, H.Y. Kim, C.C. Lee, S.Q. Zee, H.G. Joo, DeCART v1.2 User's Manual, KAERI/TR-3438/2007, Korea Atomic Energy Research Institute, 2007.
  4. V.N. Kucukboyaci, M. Ouisloumen, F. Franceschini, Two-dimensional whole core transport calculations using paragon, in: Proc. M&C 2009, Saratoga, Springs, USA, 2009.
  5. R. Sanchez, I. Zmijarevic, M. Coste-Delclaux, E. Masiello, S. Santandrea, E. Martinolli, L. Villate, N. Schwartz, N. Guler, Apollo2 year 2010, J. Nucl. Eng. Technol. 42 (2010) 474-499. https://doi.org/10.5516/NET.2010.42.5.474
  6. Y.S. Jung, C.B. Shim, C.H. Lim, H.G. Joo, Practical numerical reactor employing direct whole core neutron transport and subchannel thermal/hydraulic solvers, Ann. Nucl. Energy 62 (2013) 357-374. https://doi.org/10.1016/j.anucene.2013.06.031
  7. B. Kochunas, B. Collins, D. Jabaay, T.J. Downar, W.R. Martin, Overview of development and design of MPACT: Michigan parallel characteristics transport code, in: Proc. M&C 2013, Sun Valley, USA, 2013, pp. 42-53.
  8. J.Y. Cho, K.S. Kim, C.C. Lee, S.Q. Zee, H.G. Joo, Axial SPNand radial MOC coupled whole core transport calculation, J. Nucl. Sci. Technol. 44 (2007) 1156-1171. https://doi.org/10.1080/18811248.2007.9711359
  9. J.Y. Cho, H.G. Joo, K.S. Kim, S.Q. Zee, Cell based CMFD formulation for acceleration of whole-core method of characteristics calculations, Jounral Korean Nucl. Soc. 34 (2002) 250-258.
  10. J.Y. Cho, H.G. Joo, H.Y. Kim, M.H. Chang, Parallelization of a three dimensional whole core transport code DeCART, in: Int. Conf. Supercomput. Nucl. Appl., Paris, France, 2003, p. 13.
  11. Message Passing Interface Forum, MPI: a Message-passing Interface Standard Version 3.0, Message Passing Interface Forum, 2012.
  12. Stammler, HELIOS Methods, Scandpower, Sweden, 2004.
  13. S.G. Hong, K.S. Kim, Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calculations, Ann. Nucl. Energy 38 (2011) 32-43. https://doi.org/10.1016/j.anucene.2010.08.022
  14. R. Sanchez, G.C. Pomraning, A statistical analysis of the double heterogeneity problem, Ann. Nucl. Energy 18 (1991) 371-395. https://doi.org/10.1016/0306-4549(91)90073-7
  15. R. Sanchez, E. Masiello, Treatment of the double heterogeneity with the method of characteristics, in: Proc. PHYSOR 2002, Seoul, Korea, 2002.
  16. R. Sanchez, Renormalized treatment of the double heterogeneity with the method of characteristics, in: Proc. PHYSOR 2004, Chicago, USA, 2004.
  17. L. Pogosbekyan, G.Y. Kim, H.G. Joo, K.S. Kim, J.Y. Cho, Resolution of double heterogeneity in direct transport calculation employing subgroup method and method of characteristics, in: Proc. PHYSOR 2008, Switzerland, 2008, p. 7.
  18. K.S. Kim, S.G. Hong, J.S. Song, K.H. Lee, J.Y. Cho, H.Y. Kim, B.S. Koo, H.J. Shim, S.Y. Park, Development of a Multi-group Neutron Cross Section Library Generation System for PWR, KAERI/TR-3634/2008, Korea Atomic Energy Research Institute, 2008.
  19. A. Yamamoto, M. Tatsumi, N. Sugimura, Numerical solution of stiff burnup equation with short half lived nuclides by the krylov subspace method, J. Nucl. Sci. Technol. 44 (2007) 147-154. https://doi.org/10.1080/18811248.2007.9711268
  20. CD-adapce, STAR-CD User Giude Version 3.26, CD-Adapce, Sweden, 2006.
  21. J.W. Thomas, H.C. Lee, T.J. Downar, T. Sofu, D.P. Weber, H.G. Joo, J.Y. Cho, The Coupling of the STAR-CD software to a whole-core neutron transport code DeCART for PWR Applications, in: Int. Conf. Supercomput. Nucl. Appl., Paris, France, 2003, pp. 22-24.
  22. T.Y. Han, H.C. Lee, J.M. Noh, Development of a sensitivity and uncertainty analysis code for high temperature gas-cooled reactor physics based on the generalized perturbation theory, Ann. Nucl. Energy 85 (2015) 501-511. https://doi.org/10.1016/j.anucene.2015.06.005
  23. T.Y. Han, H.C. Lee, J.Y. Cho, Uncertainty analysis with double heterogeneity treatment based on the generalized perturbation theory, Ann. Nucl. Energy 106 (2017) 111-117. https://doi.org/10.1016/j.anucene.2017.02.031
  24. H.C. Lee, J.Y. Cho, J.M. Noh, Application of the Gaussian quadrature to the azimuthal angle discretization in MOC, in: Trans. Korean Nucl. Soc. Autumn Meet., Gyeongju, Korea, 2012, pp. 25-26.
  25. D. Lee, J. Rhodes, K. Smith, Quadratic depletion method for gadolinium isotopes in CASMO-5, J. Nucl. Sci. Eng 174 (2013) 79-86. https://doi.org/10.13182/NSE12-20
  26. B.O. Cho, H.G. Joo, J.Y. Cho, J.S. Song, S.Q. Zee, Master-3.0: Multi-purpose Analyzer for Static and Transient Effects of Reactors, KAERI/TRe2061/2002, Korea Atomic Energy Research Institute, 2002.
  27. OECD/NEA, OECD/NEA Coupled Neutronic/Thermal-fluids Benchmark of the MHTGR-350 MW Core Design Volume III: Lattice Physics Exercises, Draft Date: 1/15/2015, OECD/NEA, 2015.
  28. OECD/NEA, OECD/NEA Coupled Neutronic/Thermal-fluids Benchmark of the MHTGR-350 MW Core Design Volume I: Reference Design Definition, Draft Date: 1/15/2015, OECD/NEA, 2015.
  29. H.-K. Joo, T.A. Taiwo, W. Sik Yang, H.S. Khalil, Numerical benchmarks for very high-temperature reactors based on the CNPS critical experiments, Nucl. Technol. 161 (2008) 8-26. https://doi.org/10.13182/NT08-A3909
  30. G.E. Hansen, R.G. Palmer, Compact nuclear power source critical experiments and analysis, J. Nucl. Sci. Eng 103 (1989) 237-246. https://doi.org/10.13182/NSE89-A23674
  31. H.J. Shim, B.-S. Han, J.-S. Jung, H.J. Park, C.H. Kim, McCARD: Monte Carlo code for advanced reactor design and analysis, Nucl. Eng. Technol 44 (2012) 161-176. https://doi.org/10.5516/NET.01.2012.503
  32. R.E. Macfarlane, D.W. Muir, The NJOY Nuclear Data Processing System: Version 91, LA-12740-M, 1994.
  33. K.S. Kim, S.G. Hong, A new procedure to generate resonance integral table with an explicit resonance interference for transport lattice codes, Ann. Nucl. Energy 38 (2011) 118-127. https://doi.org/10.1016/j.anucene.2010.08.005
  34. H.C. Lee, S.G. Hong, T.Y. Han, J.Y. Cho, C.K. Jo, J.M. Noh, Assessment and improvement of DeCART depletion calculation for VHTR fuel elements, Trans. Am. Nucl. Soc. 106 (2012). Chicago, Illinois.
  35. T.Y. Han, H.C. Lee, J.M. Noh, Development of a sensitivity and uncertainty analysis code for high temperature gas-cooled reactor physics based on the generalized perturbation theory, Ann. Nucl. Energy 85 (2015) 501-511. https://doi.org/10.1016/j.anucene.2015.06.005
  36. H.C. Lee, C.K. Jo, J.M. Noh, Development of HELIOS/CAPP code system for the analysis of pebble type VHTR cores, in: Proc. PHYSOR 2010, Pittsburgh, Pennsylvania, USA, 2010.
  37. H.C. Lee, T. young Han, C.K. Jo, J.M. Noh, Development of HELIOS/CAPP code system for the analysis of block type VHTR cores, in: Proc. PHYSOR 2012, Knoxville, Tennessee, USA, 2012.
  38. J. Il Yoon, H.G. Joo, Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels, J. Nucl. Sci. Technol. 45 (2008) 668-682. https://doi.org/10.3327/jnst.45.668
  39. J.Y. Cho, H.G. Joo, B.-O. Cho, S.Q. Zee, Hexagonal CMFD formulation employing triangle-based polynomial expansion nodal kernel, in: Proc. M&C 2001, Salt Lake City, Utah, USA, 2001.
  40. M.H. Chang, K.S. Moon, J.M. Noh, S.H. Kim, A nodal expansion method with spatially coupled effects incorporated into the transverse leakage approximation, Nucl. Sci. Technol. 103 (1989) 343-350.
  41. J.Y. Cho, K.S. Kim, H.J. Shim, J.S. Song, C.C. Lee, H.G. Joo, Whole core transport calculation employing hexagonal modular ray tracing and CMFD formulation, J. Nucl. Sci. Technol. 45 (2008).

Cited by

  1. Improvement and application of DeCART/MUSAD for uncertainty analysis of HTGR neutronic parameters vol.52, pp.3, 2019, https://doi.org/10.1016/j.net.2019.08.006
  2. Extension of Pin-Based Point-Wise Energy Slowing-Down Method for VHTR Fuel with Double Heterogeneity vol.14, pp.8, 2019, https://doi.org/10.3390/en14082179