• Title/Summary/Keyword: high energy physics

Search Result 745, Processing Time 0.025 seconds

Low Dielectric Constant of MeV ion-Implanted Poly(vinylidene fluoride)

  • Lee, Sang-Yun;Kim, Bo-Hyun;Park, Soung-Kyu;Jinsoo Joo;Beag, Yowng-Whoan;Koh, Seok-keun
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Poly (vinylidene fluoride) (PVDF) samples were implanted by using high energy (MeV)F$^{2+}$ and Cl$^{2+}$ ions. We observed that AC dielectric constant of the ion-implanted PVDF samples decreased from 10.5 to 2.5 at 1 kHz as the ion dosage increased from 10$^{11}$ to 3 $\times$ 10$^{14}$ ions/$\textrm{cm}^2$. From differential scanning calorimetry experiments, we observed that PVDF samples become more disordered state through the ion implantation. The decrease of the number of bonding of C-H and C-F and the increase of unsaturated bonding were observed from X-ray photoelectron spectroscopy experiments. The emission of HF and H$_2$ molecules during the ion implantation was detected by residual gas analyzer spectrum. Based upon the results, we analyzed that the low AC dielectric constant of the MeV ion-implanted PVDF samples originated from the reduction of polarization due to the structural change of the CF$_2$ molecules in the MeV ion-implanted PVDF samples.les.

50-300 keV X-ray Transmission Ratios for Lead, Steel and Concrete

  • Tae Hwan Kim;Kum Bae Kim;Geun Beom Kim;Dong Wook Kim;Sang Rok Kim;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.164-171
    • /
    • 2022
  • The number of facilities using radiation generators increases and related regulations are strengthened, the establishment of a shielding management and evaluation technology has become important. The characteristics of the radiation generator used in previous report differ from those of currently available high-frequency radiation generators. This study aimed to manufacture lead, iron, and concrete shielding materials for the re-verification of half-value layers, tenth-value layers, and attenuation curve. For a comparison of attenuation ratio, iron, lead, and concrete shields were manufactured in this study. The initial dose was measured without shielding materials, and doses measured under different types and thicknesses of shielding material were compared with the initial dose to calculate the transmission rate on 50-300 kVp X-ray. All the three shielding materials showed a tendency to require greater shielding thickness for higher energy. The attenuation graph showed an exponential shape as the thickness decreased and a straight line as the thickness increased. The difference between the measurement results and the previous study, except in extrapolated parts, may be due to the differences in the radiation generation characteristics between the generators used in the two studies. The attenuated graph measured in this study better reflects the characteristics of current radiation generators, which would be more effective for shield designing.

Diffusion of Cosmic Rays in a Multiphase Interstellar Medium Shocked by a Supernova Remnant Blast Wave

  • Roh, Soonyoung;Inutsuka, Shu-ichiro;Inoue, Tsuyoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2015
  • Supernova remnants (SNRs) are one of the most energetic astrophysical events and are thought to be the dominant source of Galactic cosmic rays (CRs). A recent report on observations of gamma rays from the vicinity of SNRs have shown strong evidence that Galactic CR protons are accelerated by the shock waves of the SNRs. The actual gamma-ray emission from pion decay should depend on the diffusion of CRs in the interstellar medium. In order to quantitatively analyze the diffusion of high-energy CRs from acceleration sites, we have performed test particle numerical simulations of CR protons using a three-dimensional magnetohydrodynamics (MHD) simulation of an interstellar medium swept-up by a blast wave. We analyse the CRs diffusion at a length scale of order a few pc, and show the Richtmeyer-Meshkov instability can provide enough turbulence downstream of the shock to make the diffusion coefficient close to the Bohm level for energy larger than 30 TeV for a realistic interstellar medium.

  • PDF

Measurement of III-V Compound Semiconductor Characteristics using the Contactless Electroreflectance Method

  • Yu, Jae-In;Choi, Soon-Don;Chang, Ho-Gyeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.535-538
    • /
    • 2011
  • The electromodulation methods of photoreflectanceand the related technique of contactless electroreflectance(CER) are valuable tools in the evaluation of important device parameters for structures such as heterojunction bipolar transistors, pseudomorphic high electron mobility transistors, and quantum dots(QDs). CER is a very general principle of experimental physics. Instead of measuring the optical reflectance of the material, the derivative with respect to a modulating electric field is evaluated. This procedure generates sharp, differential-like spectra in the region of interband (intersubband) transitions. We conduct electric-optical studies of both GaAs layers and InAs selfassembled QDs grown by molecular beam epitaxy. Strong GaAsbandgap energy is measured in both structures. In the case of lnAs monolayers in GaAs matrices, the strong GaAsbandgap energy is caused by the lateral quantum confinement.

Bringing 3D ICs to Aerospace: Needs for Design Tools and Methodologies

  • Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.117-122
    • /
    • 2017
  • Three-dimensional integrated circuits (3D ICs), starting with memory cubes, have entered the mainstream recently. The benefits many predicted in the past are indeed delivered, including higher memory bandwidth, smaller form factor, and lower energy. However, 3D ICs have yet to find their deployment in aerospace applications. In this paper we first present key design tools and methodologies for high performance, low power, and reliable 3D ICs that mainly target terrestrial applications. Next, we discuss research needs to extend their capabilities to ensure reliable operations under the harsh space environments. We first present a design methodology that performs fine-grained partitioning of functional modules in 3D ICs for power reduction. Next, we discuss our multi-physics reliability analysis tool that identifies thermal and mechanical reliability trouble spots in the given 3D IC layouts. Our tools will help aerospace electronics designers to improve the reliability of these 3D IC components while not degrading their energy benefits.

RESULTS FROM THE YOHKOH SATELLITE

  • WATANABE TETSUYA
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.291-294
    • /
    • 1996
  • The .Japanese sun observing satellite, Yohkoh, has been operational for five years and her scientific instruments are still in good condition. They have revealed ample of evidences that solar flares were triggered by magnetic reconnection, which was, for the first time, clearly indicated to take place in the solar corona. Cusp structures in soft X-rays and a new type of hard X-ray sources at the top of flaring loops have strongly supported the scenario originally proposed by C-S-H-KP. Nonthermal energy input in hard X-rays and thermal energy estimated from soft X-rays are fundamentally consistent with the interpretation of thick-target and chromospheric-evaporation models (Neupert effect). X-ray jets, another discovery of Yohkoh, were also associated with magnetic reconnection, as a result of the interaction of emerging fluxes with pre-existing coronal loops. Temperature structures of active regions, quiet sun, and coronal holes had very dynamic differential-emission-measure (DEM) distributions and high-temperature tails of DEM were considered to come from the contribution of flare-like activity.

  • PDF

OPTICAL CHARACTERISTICS OF POROUS SILICON CARBIDE BY PHOTOLUMINESCENCE SPECTROSCOPY

  • Lee, Ki-Hwan;Du, Ying-Lei;Lee, Tae-Ho
    • Journal of Photoscience
    • /
    • v.6 no.4
    • /
    • pp.183-186
    • /
    • 1999
  • We have been prepared the porous silicon carbide (PSC) by electrochemical etching of silicon carbide single crystals. Samples of PSC have been studied by the methods of scanning electron microscope (SEM) and photoluminescence (PL). Two PL bands attributed to the blue and green light emission were observed in this study. According to the anodization conditions, the main source of emission in the oxidized layers of PSC lies in the different surface defect centers which consist of different geometrical structures due to the polytypes. It means that origin of these PL bands may be existed in different size pores simultaneously. The present results indicate that the high energy band comes from the top porous layers while the low energy band comes from the lower porous layers.

  • PDF

Synthesis of Host Polymers and Guests for Electrophosphorescence

  • Watkins Scott E.;Chan, Khai Leok;Cho, Sung-Yong;Evans Nicholas R.;Grimsdale Andrew C.;Holmes Andrew B.;Mak Chris S.K.;Sandee Albertus J.;Williams Charlotte K.
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.129-133
    • /
    • 2007
  • Significant progress has been realized in the design and synthesis of light emitting polymers that emit over the entire visible spectrum. However, up to seventy-five percent of charge recombination events can lead to triplet states that decay non-radiatively. Following the pioneering work in the field of small molecule organic light emitting devices, it has been found that solution processible iridium polymer complexes can be used to harness the wasted triplet energy. In this paper, new results with respect to the electrophosphorescence of solution processible tethered iridium polymer derivatives are presented. Furthermore, our approaches to the design of new high triplet energy conjugated polymer hosts are also reported.

Deposition of Cermet Solar Selective Coatings for High Temperature Applications (고온용 서밋 태양선택흡수막의 증착)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • Cr-CrO cermet solar selective coatings with a double cermets layer film structure were prepared using a special direct current (dc) magnetron sputtering technology. The typical films structures from surface to bottom substrate were measured to be an $Al_2O_3$ anti-reflection layer on a double Cr-CrO cermet layer on an Al metal infrared reflection layer. Optical properties of optimized Cr-CrO cermet solar selective coating were absorptance (${\alpha}$) = 0.95 and emittance (${\varepsilon}$) = 0.10 ($100^{\circ}C$). Atomic force microscopy (AFM) image showed that Cr-CrO cermet film was very smooth and their grain size was also very small The results of thermal stability test showed that the Cr-CrO cermet solar selective coatings were stable for use at temperature of $400^{\circ}C$.

Changes in the Modulation Amplitude and the Particle Sizes of Co/Pd Multilayers During Stress Release and Interdiffusion

  • Kim, Jai-Young;Evetts, Jan-E
    • Journal of Magnetics
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 1998
  • An artificially modulated magnetic Co/Pd multilayer is one of the promising candidates for high density magneto-optic (MO) recording media, due to large Kerr rotation angle in the wavelength of a blue laser beam. however, since multilayer structure, as well as amorphous structure, is a non-equilibrium state in terms of free energy and MO recording is a kind of thermal recording which is conducted aound Curie temperature (Tc) of the recording media, when the multilayer is used for the MO recording media, changes in the multilayer structure are occurred as the amorphous structure do. Therefore, the assessment of the structural stability in the Co/Pd multilayer is crucially important both for basic research and applications. As the parameter of the structural stability in this research, modulation amplitude and particle size of the Co/Pd multilayer are measured in terms of Ar sputtering pressure and heat treatment temperature. From the results of the research, we find out that the magnetic exchange energy in the structural changes of a magnetic multilayer structure and suggest the operating temperature range for MO recording in the Co/Pd multilayer for the basic research and applications, respectively.

  • PDF