• Title/Summary/Keyword: high dimensional indexing

Search Result 39, Processing Time 0.023 seconds

Locality-Sensitive Hashing for Data with Categorical and Numerical Attributes Using Dual Hashing

  • Lee, Keon Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Locality-sensitive hashing techniques have been developed to efficiently handle nearest neighbor searches and similar pair identification problems for large volumes of high-dimensional data. This study proposes a locality-sensitive hashing method that can be applied to nearest neighbor search problems for data sets containing both numerical and categorical attributes. The proposed method makes use of dual hashing functions, where one function is dedicated to numerical attributes and the other to categorical attributes. The method consists of creating indexing structures for each of the dual hashing functions, gathering and combining the candidates sets, and thoroughly examining them to determine the nearest ones. The proposed method is examined for a few synthetic data sets, and results show that it improves performance in cases of large amounts of data with both numerical and categorical attributes.

A Performance Evaluation of Indexing Methods for Content-based Retrieval of High Dimensional Multimedia Data (고차원 멀티미디어 데이터에 대한 내용기반 검색을 위한 인덱싱 방법들의 성능 평가)

  • Moon, Joo-Sun;Choi, Jeong-Hoon;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06a
    • /
    • pp.345-346
    • /
    • 2008
  • 멀티미디어 데이터베이스의 효과적인 내용 기반 검색을 위한 많은 색인 방법들이 연구되어왔지만 정작 동일한 데이터 집합과 동일한 평가 기준으로 서로 다른 검색 방법들의 성능을 분석한 실험은 이뤄지지 않았다. 본 논문에서는 기존의 대표적인 색인 방법들을 구현하고 공통의 데이터 집합에 대한 색인 검색을 여러 성능 측정 기준에 따라 분석함으로써 각 색인 방법들의 특징 및 성능을 객관적으로 평가하였다. 향후 본 논문에서 실험한 결과들을 이용하면 특정 데이터 집합에 효과적인 색인 방법을 선택할 수 있을 것이다.

  • PDF

Cell-based Signature Tree: Efficient Indexing Structures for Similarity Search in High-Dimensional Feature Space (셀기반 시그니쳐 트리: 고차원 데이터의 유사어 검색을 위한 효율적인 색인 구조)

  • 송광택;장재우
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.134-136
    • /
    • 2000
  • 본 논문에서는 고차원의 특징 벡터 공간에서의 객체에 대한 효율적인 검색을 지원하는 셀기반 시그니쳐 트리 색인 구조(CS-트리, CI-트리)를 제안한다. 특징 벡터 공간을 셀로써 분할하고 특징 벡터는 셀의 시그니쳐로 표현되며 트리에 저장된다. 특징 벡터 대신 시그니쳐를 사용하여 트리의 깊이가 낮아짐으로서 검색을 효율적으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 이용한 유사성 검색 알고리즘으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 성능 비교를 수행하여, 성능비교 결과 본 논문에서 제안하는 CS-트리와 CI-트리가 검색 시간 측면에서 최대 30%의 검색 성능이 개선됨을 보인다.

  • PDF

A New Indexing Technique for Processing Nearest Neighbor Queries in High Dimensional Space (고차원 공간에서 최근접 질의를 효과적으로 처리하기 위한 새로운 인덱싱 기법)

  • ;Charu Aggarwal;Philip S. Yu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.83-85
    • /
    • 2000
  • 최근접 질의(nearest neighbor query)는 멀티미디어 데이터베이스에서 주어진 질의 객체와 가장 유사한 객체를 찾기 위한 매우 중요한 연산으로 사용된다. 대부분의 최근접 질의 처리 기법들은 객체의 효과적인 인덱싱을 위하여 다차원 인덱스(multidimensional index)를 사용한다. 그러나 N차원 시각형 혹은 원을 사용하여 객체 클러스터의 캡슐을 표현하는 기존의 다차원 인덱스들은 차원 수가 높아짐에 따라 검색 성능이 크게 떨어진다. 본 논문에서는 이러한 문제를 해결하는 새로운 인덱스 구조를 제시하고, 이를 이용하는 최근접 질의 처리 방안을 제안한다. 또한, 다양한 실험에 의한 성능 평가를 통하여 제안된 기법의 우수성을 검증한다.

  • PDF

Vector Approximation Bitmap Indexing Method for High Dimensional Multimedia Database (고차원 멀티미디어 데이터 검색을 위한 벡터 근사 비트맵 색인 방법)

  • Hwang, Jee-Ik;Son, Dae-On;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.46-48
    • /
    • 2005
  • 기존의 다차원 색인 기법들이 고차원의 특징 벡터를 갖는 멀티미디어 컨텐츠 검색 분야에서 만족할 만한 성능을 보이지 못하므로, 이를 해결하기 위해 VA-File, LPC-File 등의 벡터 근사 방법이 개발 되었다. 이러한 방법들은 데이터의 접근에 소요되는 시간이 전체 검색시간의 대부분을 차지하는 경우에 효과적으로 사용할 수 있다. 그러나 고차원의 멀티미디어 데이터 검색에서 객체간의 거리 계산 시간은 데이터 접근 시간에 비해 무시할 만큼 작지 않으므로 이 방법들을 그대로 적용하기는 어렵다. 본 논문에서는 객체간의 거리 계산 시간을 줄이기 위한 새로운 색인 기법을 제안하고 실험을 통해 이 방법이 기존의 방법들에 비해 우수한 검색 성능을 가진다는 것을 보인다.

  • PDF

(Content-Based Video Copy Detection using Motion Directional Histogram) (모션의 방향성 히스토그램을 이용한 내용 기반 비디오 복사 검출)

  • 현기호;이재철
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.497-502
    • /
    • 2003
  • Content-based video copy detection is a complementary approach to watermarking. As opposed to watermarking, which relies on inserting a distinct pattern into the video stream, video copy detection techniques match content-based signatures to detect copies of video. Existing typical content-based copy detection schemes have relied on image matching which is based on key frame detection. This paper proposes a motion directional histogram, which is quantized and accumulated the direction of motion, for video copy detection. The video clip is represented by a motion directional histogram as a 1-dimensional graph. This method is suitable for real time indexing and counting the TV CF verification that is high motion video clips.

SOM-Based $R^{*}-Tree$ for Similarity Retrieval (자기 조직화 맵 기반 유사 검색 시스템)

  • O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.507-512
    • /
    • 2001
  • Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.

  • PDF

Implementation of an Efficient Microbial Medical Image Retrieval System Applying Knowledge Databases (지식 데이타베이스를 적용한 효율적인 세균 의료영상 검색 시스템의 구현)

  • Shin Yong Won;Koo Bong Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.93-100
    • /
    • 2005
  • This study is to desist and implement an efficient microbial medical image retrieval system based on knowledge and content of them which can make use of more accurate decision on colony as doll as efficient education for new techicians. For this. re first address overall inference to set up flexible search path using rule-base in order U redure time required original microbial identification by searching the fastest path of microbial identification phase based on heuristics knowledge. Next, we propose a color ffature gfraction mtU, which is able to extract color feature vectors of visual contents from a inn microbial image based on especially bacteria image using HSV color model. In addition, for better retrieval performance based on large microbial databases, we present an integrated indexing technique that combines with B+-tree for indexing simple attributes, inverted file structure for text medical keywords list, and scan-based filtering method for high dimensional color feature vectors. Finally. the implemented system shows the possibility to manage and retrieve the complex microbial images using knowledge and visual contents itself effectively. We expect to decrease rapidly Loaming time for elementary technicians by tell organizing knowledge of clinical fields through proposed system.

  • PDF

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.