International Journal of Fuzzy Logic and Intelligent Systems
/
v.14
no.2
/
pp.98-104
/
2014
Locality-sensitive hashing techniques have been developed to efficiently handle nearest neighbor searches and similar pair identification problems for large volumes of high-dimensional data. This study proposes a locality-sensitive hashing method that can be applied to nearest neighbor search problems for data sets containing both numerical and categorical attributes. The proposed method makes use of dual hashing functions, where one function is dedicated to numerical attributes and the other to categorical attributes. The method consists of creating indexing structures for each of the dual hashing functions, gathering and combining the candidates sets, and thoroughly examining them to determine the nearest ones. The proposed method is examined for a few synthetic data sets, and results show that it improves performance in cases of large amounts of data with both numerical and categorical attributes.
Proceedings of the Korean Information Science Society Conference
/
2008.06a
/
pp.345-346
/
2008
멀티미디어 데이터베이스의 효과적인 내용 기반 검색을 위한 많은 색인 방법들이 연구되어왔지만 정작 동일한 데이터 집합과 동일한 평가 기준으로 서로 다른 검색 방법들의 성능을 분석한 실험은 이뤄지지 않았다. 본 논문에서는 기존의 대표적인 색인 방법들을 구현하고 공통의 데이터 집합에 대한 색인 검색을 여러 성능 측정 기준에 따라 분석함으로써 각 색인 방법들의 특징 및 성능을 객관적으로 평가하였다. 향후 본 논문에서 실험한 결과들을 이용하면 특정 데이터 집합에 효과적인 색인 방법을 선택할 수 있을 것이다.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.134-136
/
2000
본 논문에서는 고차원의 특징 벡터 공간에서의 객체에 대한 효율적인 검색을 지원하는 셀기반 시그니쳐 트리 색인 구조(CS-트리, CI-트리)를 제안한다. 특징 벡터 공간을 셀로써 분할하고 특징 벡터는 셀의 시그니쳐로 표현되며 트리에 저장된다. 특징 벡터 대신 시그니쳐를 사용하여 트리의 깊이가 낮아짐으로서 검색을 효율적으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 이용한 유사성 검색 알고리즘으로 수행할 수 있다. 또한 셀에 적합한 새로운 가지치기 거리를 유사성 검색 알고리즘을 제시한다. 마지막으로 우수한 고차원 색인 기법으로 알려져 있는 X-트리와 성능 비교를 수행하여, 성능비교 결과 본 논문에서 제안하는 CS-트리와 CI-트리가 검색 시간 측면에서 최대 30%의 검색 성능이 개선됨을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2000.10a
/
pp.83-85
/
2000
최근접 질의(nearest neighbor query)는 멀티미디어 데이터베이스에서 주어진 질의 객체와 가장 유사한 객체를 찾기 위한 매우 중요한 연산으로 사용된다. 대부분의 최근접 질의 처리 기법들은 객체의 효과적인 인덱싱을 위하여 다차원 인덱스(multidimensional index)를 사용한다. 그러나 N차원 시각형 혹은 원을 사용하여 객체 클러스터의 캡슐을 표현하는 기존의 다차원 인덱스들은 차원 수가 높아짐에 따라 검색 성능이 크게 떨어진다. 본 논문에서는 이러한 문제를 해결하는 새로운 인덱스 구조를 제시하고, 이를 이용하는 최근접 질의 처리 방안을 제안한다. 또한, 다양한 실험에 의한 성능 평가를 통하여 제안된 기법의 우수성을 검증한다.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.46-48
/
2005
기존의 다차원 색인 기법들이 고차원의 특징 벡터를 갖는 멀티미디어 컨텐츠 검색 분야에서 만족할 만한 성능을 보이지 못하므로, 이를 해결하기 위해 VA-File, LPC-File 등의 벡터 근사 방법이 개발 되었다. 이러한 방법들은 데이터의 접근에 소요되는 시간이 전체 검색시간의 대부분을 차지하는 경우에 효과적으로 사용할 수 있다. 그러나 고차원의 멀티미디어 데이터 검색에서 객체간의 거리 계산 시간은 데이터 접근 시간에 비해 무시할 만큼 작지 않으므로 이 방법들을 그대로 적용하기는 어렵다. 본 논문에서는 객체간의 거리 계산 시간을 줄이기 위한 새로운 색인 기법을 제안하고 실험을 통해 이 방법이 기존의 방법들에 비해 우수한 검색 성능을 가진다는 것을 보인다.
Content-based video copy detection is a complementary approach to watermarking. As opposed to watermarking, which relies on inserting a distinct pattern into the video stream, video copy detection techniques match content-based signatures to detect copies of video. Existing typical content-based copy detection schemes have relied on image matching which is based on key frame detection. This paper proposes a motion directional histogram, which is quantized and accumulated the direction of motion, for video copy detection. The video clip is represented by a motion directional histogram as a 1-dimensional graph. This method is suitable for real time indexing and counting the TV CF verification that is high motion video clips.
O, Chang-Yun;Im, Dong-Ju;O, Gun-Seok;Bae, Sang-Hyeon
The KIPS Transactions:PartD
/
v.8D
no.5
/
pp.507-512
/
2001
Feature-based similarity has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects. the performance of conventional multidimensional data structures tends to deteriorate as the number of dimensions of feature vectors increase. The $R^{*}-Tree$ is the most successful variant of the R-Tree. In this paper, we propose a SOM-based $R^{*}-Tree$ as a new indexing method for high-dimensional feature vectors. The SOM-based $R^{*}-Tree$ combines SOM and $R^{*}-Tree$ to achieve search performance more scalable to high-dimensionalties. Self-Organizingf Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two-dimensional space. The map is called a topological feature map, and preserves the mutual relationships (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. We experimentally compare the retrieval time cost of a SOM-based $R^{*}-Tree$ with of an SOM and $R^{*}-Tree$ using color feature vectors extracted from 40,000 images. The results show that the SOM-based $R^{*}-Tree$ outperform both the SOM and $R^{*}-Tree$ due to reduction of the number of nodes to build $R^{*}-Tree$ and retrieval time cost.
Journal of the Korea Society of Computer and Information
/
v.10
no.1
s.33
/
pp.93-100
/
2005
This study is to desist and implement an efficient microbial medical image retrieval system based on knowledge and content of them which can make use of more accurate decision on colony as doll as efficient education for new techicians. For this. re first address overall inference to set up flexible search path using rule-base in order U redure time required original microbial identification by searching the fastest path of microbial identification phase based on heuristics knowledge. Next, we propose a color ffature gfraction mtU, which is able to extract color feature vectors of visual contents from a inn microbial image based on especially bacteria image using HSV color model. In addition, for better retrieval performance based on large microbial databases, we present an integrated indexing technique that combines with B+-tree for indexing simple attributes, inverted file structure for text medical keywords list, and scan-based filtering method for high dimensional color feature vectors. Finally. the implemented system shows the possibility to manage and retrieve the complex microbial images using knowledge and visual contents itself effectively. We expect to decrease rapidly Loaming time for elementary technicians by tell organizing knowledge of clinical fields through proposed system.
Journal of the Computational Structural Engineering Institute of Korea
/
v.17
no.3
/
pp.319-332
/
2004
Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.