• Title/Summary/Keyword: high density energy beam

Search Result 148, Processing Time 0.024 seconds

High aspect-ratio InGaN nanowire photocatalyst grown by molecular beam epitaxy (MBE 법에 의해 성장된 고종횡비 InGaN 나노와이어 광촉매)

  • An, Soyeon;Jeon, Dae-Woo;Hwang, Jonghee;Ra, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.143-148
    • /
    • 2019
  • We have successfully fabricated high aspect-ratio GaN-based nanowires on Si substrates using molecular beam epitaxy (MBE) system for high-efficiency hydrogen generation of photoelectrochemical water splitting. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) demonstrated that p-GaN:Mg and p-InGaN nanowires were grown vertically on the substrate with high density. Furthermore, it was also confirmed that the emission wavelength of p-InGaN nanowire can be adjusted from 552 nm to 590 nm. Such high-aspect ratio p-InGaN nanowire structure will be a solid foundation for the realization of ultrahigh-efficiency photoelectrochemical water splitting through sunlight.

Charicteristics of HF 10-cm Type Grid Ion Source for Inert and Chemically Reactive Gases.

  • Chol, W.K;Koh, S.K;Jang, H.G;Jung, H.J;Kondranin, S.G.;Kralkina, E.A.;Bougrov, G.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.02a
    • /
    • pp.102-102
    • /
    • 1996
  • This paper represents a new type low power High Frequency technological ion source (HF TIS) for ion - beam processing: the surface modification of materials, cleaning of surface, sputtering, coating of thin films, and polishing. The operational principle of HF TIS is based on the excitation of electrostatic waves in plasma located in the external magnetic field. Low power HF TIS with diameter 92 rom gives the opportunity to obtain beams of inert and chemically reactive gases with currents range from 5 to 150 mA (current density $0.015\;~\;3.5\;mA/\textrm{m}^2$) and ion beam energy 100 ~ 2500 eV at a HF power level 10 ~ 150 W. Three grid concave type ion optical system (IOS) is used for extraction and formation ofion beam.n beam.

  • PDF

Characteristics of Nanolithography Process on Polymer Thin-film using Near-field Scanning Optical Microscope (근접장현미경을 이용한 폴리머박막 나노리쏘그라피 공정의 특성분석)

  • 권상진;김필규;장원석;정성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.590-595
    • /
    • 2004
  • The shape and size variations of the nanopatterns produced on a positive photoresist using a near-field scanning optical microscope(NSOM) are investigated with respect to the process variables. A cantilever type nanoprobe having a 100nm aperture at the apex of the pyramidal tip is used with the NSOM and a He-Cd laser at a wavelength of 442nm as the illumination source. Patterning characteristics are examined for different laser beam power at the entrance side of the aperture( $P_{in}$ ), scan speed of the piezo stage(V), repeated scanning over the same pattern, and operation modes of the NSOM(DC and AC modes). The pattern size remained almost the same for equal linear energy density. Pattern size decreased for lower laser beam power and greater scan speed, leading to a minimum pattern width of around 50nm at $P_{in}$ =1.2$\mu$W and V=12$\mu$m/. Direct writing of an arbitrary pattern with a line width of about 150nm was demonstrated to verify the feasibility of this technique for nanomask fabrication. Application on high-density data storage using azopolymer is discussed at the end.

  • PDF

Study on ZnO Thin Film Irradiated by Ion Beam as an Alignment Layer (배향막 응용을 위한 이온 빔 조사된 ZnO 박막에 관한 연구)

  • Kang, Dong-Hoon;Kim, Byoung-Yong;Kim, Jong-Yeon;Kim, Young-Hwan;Kim, Jong-Hwan;Han, Jeong-Min;Ok, Chul-Ho;Lee, Sang-Keuk;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.430-430
    • /
    • 2007
  • In this study, the nematic liquid crystal (NLC) alignment effects treated on the ZnO thin film layers using ion beam irradiation were successfully studied for the first time. The ZnO thin films were deposited on indium-tin-oxide (ITO) coated glass substrates by rf-sputter and The ZnO thin films were deposited at the three kinds of rf power. The used DuoPIGatron type ion beam system, which can be advantageous in a large area with high density plasma generation. The ion beam parameters were as follows: energy of 1800 eV, exposure time of 1 min and ion beam current of $4\;mA/cm^2$ at exposure angles of $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The homogeneous and homeotropic LC aligning capabilities treated on the ZnO thin film surface with ion beam exposure of $45^{\circ}$ for 1 min can be achieved. The low pretilt angle for a NLC treated on the ZnO thin film surface with ion beam irradiation for all incident angles was measured. The good LC alignment treated on the ZnO thin film with ion beam exposure at rf power of 150 W can be measure. For identifying surfaces topography of the ZnO thin films, atomic force microscopy (AFM) was introduced. After ion beam irradiation, test samples were fabricated in an anti-parallel configuration with a cell gap of $60{\mu}m$.

  • PDF

Plasma Sources for Production of High Flux Particle Beams in Hyperthermal Energy Range (하이퍼써멀 에너지 영역에서 높은 플럭스 입자빔 생성을 위한 플라즈마 발생원)

  • Yoo, S.J.;Kim, S.B.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.186-196
    • /
    • 2009
  • Since it is difficult to extract a high flux ion beam directly at an energy of hyperthermal range ($1{\sim}100\;eV$), especially, lower than 50 eV, the ions should be neutralized into neutral particles and extracted as a neutral beam. A plasma source required to generate and efficiently transport high flux hyperthermal neutral beams should be easily scaled up and produce a high ion density (${\ge}10^{11}\;cm^{-3}$) even at a low working pressure (${\le}$ 0.3 mTorr). It is suggested that the required plasma source can be realized by Electron Cyclotron Resonance (ECR) plasmas with diverse magnetic field configurations of permanent magnets such as a planar ECR plasma source with magnetron field configuration and cylindrical one with axial magnetic fields produced by permanent magnet arrays around chamber wall. In both case of the ECR sources, the electron confinement is based on the simple mirror field structure and efficiently enhanced by electron drifts for producing the high density plasma even at the low pressure.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

System of stable action waveform by pulse special quality of obstetrics and gynecology pulse style $CO_2$ laser (산부인과 펄스형 $CO_2$ 레이저의 펄스 특성에 의한 안정된 동작파형의 시스템)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.55-57
    • /
    • 2007
  • $CO_2$ laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400ums laser beam in rain focus sacred ground surroundings cellular, tissue without vitiation me by evaporation Poe of very small floor as is clean steam can. Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can. Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF

A Study on the Distribution of Welding Residual Stresses in $2\frac{1}{4}Cr-1Mo$ Steel by $CO_2$ Laser Welding (수치해석에 의한 $2\frac{1}{4}Cr-1Mo$$CO_2$ 레이저 용접부의 잔류응력 분포 특성에 관한 연구)

  • Bang, Han-Sur;Kim, Young-Pyo;Kim, Hyoung;Yu, Suk-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.274-278
    • /
    • 2003
  • In recent, an application of high energy density beam we/ding is increasing to obtain the high quality in weldments. Laser welding, especially, has been recognized as an useful method and its beam power has also increased according to the development of relevant technology. However, welding method in the fields of power plant is conservative because their structures have required to endure high temperature and pressure. So, authors conduct the numerical simulation in order to consider the possibility of laser welding on the material of the pressure vessels ($2\frac{1}{4}Cr-1Mo$ steel). As a result of this study, we can confirm the advantages of laser welding and obtain useful information for the experiments of weldability.

  • PDF

Development of a pulsed Nd:YAG laser materials processing system (정밀 용접용 펄스형 Nd:YAG 레이저 가공기 개발)

  • 김덕현;정진만;김철중;이종민
    • Journal of Welding and Joining
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 1991
  • A 200W pulsed Nd: YAG laser for fine welding was developed. The important laser parameters such as laser peak power, average power, pulse width, and pulse energy for welding were studied. In order to obtain the sufficient laser power density for welding, thermal lensing effects were analyzed and a laser resonator with laser beam divergence was designed. The power supply unit was designed to support up to 7kW input. The pulse control unit was developed using a GTO thyristor and could control over 100kW input power to obtain 3.5kW peak power laser. Also due to the GTO thyristor the pulse width could be varied continuously from 0.1 to 20 msec and maximum repetition rate was as high as 300pps.

  • PDF

Fixed system of action waveform by pulse module special quality of obstetrics and gynecology pulse style $CO_2$ laser relationship embodiment (산부인과 펄스형 $CO_2$ 레이저의 펄스모듈 특성에 의한 동작파형의 일정한 시스템의 구현)

  • Kim, Whi-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.159-161
    • /
    • 2007
  • $CO_2$ laser sees that is most suitable to get this effect through minimum formation damage and advantage that is root enemy of effect that happen in minimum cellular tissue depth of 0.1mm is stable living body organization or internal organs institution. Formation damage by ten can be related in formation's kind or energy density, length of evaporation time. If shorten evaporation time, surroundings cellular thermal damage 200 - because happen within 400ums laser beam in rain focus sacred ground surroundings cellular tissue without vitiation me by evaporation Poe of very small floor as is clean steam can. Application is possible to vulva cuticle cousins by a paternal aunt quantity, uterine cancer, cuticle tumor by laser system that $CO_2$ laser gets into standard in obstetrics and gynecology application. Because effect that super pulse output is ten enemies of laser if uniformity one pulse durations are short almost is decreased, most of all pulse module special quality of pulse style $CO_2$ laser for obstetrics and gynecology mode stabilization by weight very, in this research to get into short pulse duration and higher frequency density, do switching by high frequency in DC-DC Converter output DC's ripple high frequency to be changed, high frequency done current ripple amount of condenser for output filter greatly reduce can. Ripple of output approximately to Zero realization applying possible inductor realization through a special quality experiment do.

  • PDF