• Title/Summary/Keyword: high density composite

Search Result 501, Processing Time 0.036 seconds

Fabrication and Characterization of Alumina-TZP(3Y) Composite Ceramics (알루미나-TZP(3Y) 세라믹스 복합체의 제조 및 기계적 특성)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.170-174
    • /
    • 2015
  • Composite ceramics of alumina-TZP(3Y) have good mechanical and electrical properties. So, They have been used as high strength refractory materials and thick film substrates, etc. In this study, Composite ceramics of alumina-TZP(3Y) were fabricated by uniaxial pressing and sintering at 1,400, 1,500, and $1,600^{\circ}C$, and their microstructures and mechanical properties were investigated. As the TZP(3Y) content in composite ceramics increases from 20 wt.% to 80 wt.%, the fracture toughness increases monotonically, which seems to be related to the higher relative density and/or toughening mechanism by means of stabilized tetragonal zirconia phase at room temperature. In contrast to the fracture toughness, Vickers hardness of the composite ceramics shows maximum value (1,938 Hv) at a 40 wt.% of TZP(3Y). The result of Vickers hardness is likely to be due to more dense sintered microstructure of composite ceramics than pure alumina and reinforcement of composite ceramics with TZP(3Y), considering that Vickers hardness of pure $Al_2O_3$ is greater than that of TZP(3Y). It is also shown that the $ZrO_2$ particles are $l^{\circ}Cated$ between $Al_2O_3$ grains and suppress grain growth each other.

Effect of Fabric Structural Parameters and Surface Finishing Characteristics to Water Repellency/Proofing/Vapor Permeability of Breathable Fabrics for Sportswear Clothing (직물 구조인자와 표면 가공특성이 스포츠 의류용 투습직물의 발수/방수/투습특성에 미치는 영향)

  • Kim, Hyun Ah
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.112-118
    • /
    • 2020
  • This paper examined the water repellency, water proofing and water vapor permeability of twelve types of woven fabrics for sports wear clothing. Their physical properties were compared and discussed with the fabric structural parameters and surface finishing effect. A water repellent property of 100% was obtained in the coated or laminated water repellent finished fabrics; in addition, cotton/nylon breathable composite fabrics treated with a laminated finishing and with low fabric density showed a 90% water repellency. Water proofing fabric above 6,000 mm H2O hydraulic pressure was achieved by coated or laminated finishing; however, high density fabric or medium-level coated fabrics exhibited 100% water repellent and low water proofing characteristics. Superior water vapor permeability characteristics with good water repellency and proofing properties were achieved at the 2.5 layered low density and with 0.7 - 0.9 cover factor nylon fabrics treated with hydrophilic laminated finishing. The regression analysis for examining the effects of fabric structural parameters and surface finishing such as coating and laminating to the water vapor permeability exhibited a high determination coefficient of fabric structural parameters of 63.5%; in addition,, main factors among fabric structural parameters appeared to be cover factor and fabric thickness per weight. Coating and Laminating factors exhibited determination coefficient of water vapor permeability parameters of 36.5%.

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Cross-link Density Measurement and Thermal Oxidative Degradation Analysis of a Carbon Black Compounded EPDM Rubber Hose (카본블랙을 충전한 EPDM 고무호스의 가교밀도 측정과 열가속 및 산소 노화거동)

  • Kwak, Seung-Bum;Choi, Nak-Sam;Kim, Jin-Kuk
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.35-43
    • /
    • 2009
  • In this study, for a radiator hose made of carbon black filled EPDM(ethylene-propylene diene monomer) rubber, a measuring method of crosslink density was established to analyze the aging behaviors under thermo-oxidative stresses. At $125^{\circ}C$, the crosslink density of the rubber specimens decreased slightly in the initial stage, but increased with increasing the aging time. Such variation in crosslink density was similar to that of tensile strength. This might be due to the formation of sulphoxide crosslinks as well as to additional crosslinks made by the reaction of unvalcunized sulfurs. A high temperature aging of rubber specimens at $180^{\circ}C$ caused a slight increase in crosslink density while it did a large decrease in tensile strength and elongation. With aging at high temperature, the formation of carbonyl groups in EPDM molecule chain and formation of sulphoxide crosslink, rather than the crosslink density variation itself, had a large influence on such changes in mechanical property.

Microstructure and Polytype of in situ-Toughened Silicon Carbide

  • Young Wook Kim;Mamoru Mitomo;Hideki Hirotsuru
    • The Korean Journal of Ceramics
    • /
    • v.2 no.3
    • /
    • pp.152-156
    • /
    • 1996
  • Fine (~0.09 $\mu$m) $\beta$-SiC Powders with 3.3wt% of large (~0.44$\mu$m) $\alpha$-SiC of $\beta$-SiC particles (seeds) added were hotpressed at 175$0^{\circ}C$ using $Y_2O_3$, $Al_2O_3$ and CaO as sintering aids and then annealed at 185$0^{\circ}C$ for 4 h to enhance grain growth. The resultant microstructure and polytypes were analyzed by high resolution electron microscopy (HREM).Growth of $\beta$-SiC with high density of microtwins and formation of ${\alpha}/{\beta}$ composite grains consisting of $\alpha$-SiC domain sandwiched between $\beta$-SiC domains were found in both specimens. When large $\alpha$-SiC (mostly 6H) seeds were added, the $\beta$-SiC transformend preferentially to the 6H polytype. In contrast, when large $\beta$-SiC (3C) seeds were added, the fine $\beta$-SiC transformed preferentially to the 4H polytype. Such results suggested that the polytype formation in SiC was influenced by crystalline form of seeds added as well as the chemistry of sintering aids. The ${\alpha}/{\beta}$ interface played and important role in the formation of elongated grains as evidenced by presence of ${\alpha}/{\beta}$ composite grains with high aspect ratio.

  • PDF

Development of Triacetate-containing Functional Coolness Fabrics with Cool-Touch and Cool-Absorbent (접촉 냉감 및 흡수 냉감을 갖는 트리아세테이트 함유 기능성 냉감 직물 개발)

  • Kim, Myoung Ok;Lee, Jung-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.5
    • /
    • pp.799-808
    • /
    • 2018
  • This study develops triacetate-containing functional fabrics with a cool-touch and cool-absorbent. For this purpose we used composite yarns made using triacetate filament and PET High absorbance quick dry filament as well as the composite fabric woven. The fineness of the yarn and structure of fabric varied the cover factor varied. The blend ratio of triacetate was differently set. When the triacetate content was the same, the cool touch of the fabric having a large cover factor and small SMD increased. The surface became smooth and the contact area became large; in addition, both the Qmax value and the cool-touch became large. In the case of similar density, the cool-touch of the fabric having a large content of triacetate increased. The cool-absorbent of the fabric containing triacetate showed a similar level of the PET High absorbance quick dry filament fabric treated with and endothermic cooling agent. It was possible to develop a functional coolness fabric with a cool-touch and a cool-absorbent when the content of triacetate and cover factor were well combined.

Fabrication and Mechanical Properties of Dense WSi2-20vol.%SiC Composite by High-Frequency Induction-Heated Combustion Synthesis (고주파유도가열 연소합성에 의한 치밀한 WSi2-20vol.%SiC 복합재료 제조 및 기계적 특성)

  • Oh, Dong-Young;Kim, Hwan-Cheol;Lee, Sang-Kwon;Shon, In-Jin
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Dense $WSi_2$-20vol.%SiC composite was synthesized by high-frequency induction-heated combustion synthesis(HFIHCS) method within 2 minutes in one step from elemental powder mixture of W, Si and C. Simultaneous combustion synthesis and densification were accomplished under the combined effects of an induced current and mechanical pressure. Highly dense $WSi_2$-20vol.%SiC with relative density of up to 97% was produced under simultaneous application of 60MPa pressure and the induced current. The average grain size of $WSi_2$ was about $5.2{\mu}m$. The hardness and fracture toughness values obtained were 1700kg/$mm^2$ and $4.4MPa{\cdot}m^{1/2}$, respectively.

Rapid Sintering and Synthesis of a Nanocrystalline Fe-Si3N4 Composites by High-Frequency Induction Heating (고주파유도 가열에 의한 나노구조 Fe-Si3N4 복합재료의 합성 및 급속소결)

  • Ko, In-Yong;Du, Song-Lee;Doh, Jung-Mann;Yoon, Jin-Kook;Park, Sang-Whan;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.715-719
    • /
    • 2011
  • Nanopowders of $Fe_3N$ and Si were fabricated by high-energy ball milling. A dense nanostructured $12Fe-Si_3N_4$ composite was simultaneously synthesized and consolidated using a high-frequency induction-heated sintering method for 2 minutes or less from mechanically activated powders of $Fe_3N$ and Si. Highly dense $12Fe-Si_3N_4$ with a relative density of up to 99% was produced under simultaneous application of 80 MPa pressure and the induced current. The microstructure and mechanical properties of the composite were investigated.

A Study on Deflection Characteristics of Plywood for Wood Based Flooring by Veneer Composition (마루판용 합판의 단판 구성요소에 따른 변형 특성에 관한 연구)

  • Pi, Duck-Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.42-50
    • /
    • 2013
  • Since 1990's, a plywood for flooring base has gotten customers' demand. Costs of raw material and production increased because of changed environment of industry. Tropical timber such as Red Meranti (Shorea acuminate) used for raw material of the floor has been depleting beside countries in South Eastern Asia changed species of afforestation. As a result, it gets hard to secure good quality of raw material for plywood. Moreover plywood price is increased suddenly after earthquake in Japan. Eucalyptus (Eucalyptus globulus) in china has been using for raw material as a countermeasure of changed environment of industry. In this study, possibility of using flooring consisted of Eucalyptus veneer as crossband layers was checked by deflection experiments. Flooring consisted of Red Meranti was used for comparison. Two factors which impact on deflection are a type of density gradient and density difference between Long-grain veneer and Short-grain veneer. Red Meranti samples are M type of density gradient on the other hand Eucalyptus samples are W type of density gradient. The more samples have high density difference, the more deformation was checked. A sample which has big density difference between core and cross bands layer warp more also deform. Flooring was deformed smaller than plywood and samples which have big density difference was deformed more.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.