• Title/Summary/Keyword: high curing temperature

Search Result 504, Processing Time 0.027 seconds

Effect of cyclic Change of Wet Bulb Temperature During Yellowing Stage on Chemical Properties of Flue-Cured Tobacco (황색종 cyclic 건조엽의 화학성분 특성)

  • Lee, Chul-Hwan;Jin, Jeong-Eui;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 1998
  • The bulk curing experiment to the improve the quality of flue-cured leaves were carried out to evaluate relationship between cyclic curing and conventional curing method. We studied the effect of the cyclic change of wet bulb temperature at the yellowing stage of flue curing on chemical properties of cured leaves. The wet bulb temperature was automatically controlled between preset high($38^{\circ}C$) and low point ($35^{\circ}C$) everyone hour cyclically during 12 hours after starting luring. As a result, the acceleration of the increase in the chemical properties of cured leaves were observed. As to the chemical properties, there was decreased in citric acid, increased in malic acid of the nonvolatile organic acids and all higher fatty acids content of leaves cured by this method compared with in that of conventional curing method, while a major chemical compounds in relation to aromatic essence of cigarette smoke in essential oil components of lured leaves was mostly higher in this method than those of conventional ones, and it was evaluated that there was decreased in CO, TPM, Tar, and $CO_2$ content of the cigarette smoke comparing to the conventional luring method.

  • PDF

Strength and Efflorescence Characteristics of Alkali-Activated Slag Cement Mortar with Red Mud according to Curing Conditions (양생조건에 따른 레드머드 혼입 알칼리활성화 슬래그 시멘트 모르타르의 강도 및 백화특성)

  • Kang, Suk-Pyo;Hwang, Byoung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.267-275
    • /
    • 2018
  • This study is to investigate the effect of various temperature and humidity conditions on the strength and efflorescence of alkali activated slag cement(AAS) using the red mud. As a result of examining the strength and efflorescence characteristics of AAS mixed with red mud according to the curing conditions, The compressive strength and flexural strength were the highest at 28 days, but the absorption rate, efflorescence area and soluble $Na^+$ elution were lowest in standard wet curing compared to the air curing, high temperature curing and low temperature curing.

The Study on the Surface Properties of Concrete Tile According to the Autoclave Curing (오토클레이브 양생에 따른 콘크리트 마감재의 표면특성에 관한 연구)

  • Choi Sun-Mi;Jung Ji-Yong;Jung Eun-Hye;Kawg Eun-Gu;Kim Jin-man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.77-80
    • /
    • 2005
  • The surface of concrete tiles is weak in moisture that it occurrenced efflorescence, but in the former study we found that it is possible to ensure moisture stability of concrete surface by autoclaving. So this study is to discuss the moisture stability and Physical Properties of high-strength glossy concrete according to time and temperature of autoclave curing. As the results, by increasing time and temperature of autoclave curing, compressive strength and surface hardness increased and glossiness decreased. In the case to 3 hour and $180^{\circ}C$ of autoclave curing, there is not effloescences in mosture stability test.

  • PDF

Analysis of Installation Environment and Fire Risk of Induction Motors Installed in the Curing Process of a Rubber Product Manufacturing Plant (고무제품제조공장의 가류공정에 설치된 유도전동기의 설치환경 및 화재위험성 분석)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.23-29
    • /
    • 2023
  • This study analyzed the fire status of a rubber product manufacturing factory based on 19 years of fire data. Through the analysis of the current state of fire, electrical fires accounted for 58.19%, and among electrical fires, motor fires were the highest at 26.21%. For the motor fire occurrence process, the curing process accounted for the highest rate of 51.9%. Therefore, the installation environment was investigated for the motor in the curing process, and it was confirmed that the motor's maximum ambient temperature exceeded 40℃. In particular, in the case of the motor for curing operation, the motor was installed in a separate motor room, so the average indoor temperature was 48.10℃ and the motor frame's maximum temperature was 72.80℃. In this study, the risk of motor fire was confirmed through a field survey, and a safety management plan was derived by finding a process with high fire risk and conducting an experiment on the motor's installation environment and electrical characteristics in that process.

Effect of Cyclic Change of Wet Bulb Temperature During Yellowing Stage on Physical Properties of Flue-Cured Tobacco (황색종 연초 황변기 cyclic건조가 건조엽의 물리성에 미치는 영향)

  • Lee, Chul-Hwan;Jin, Jeong-Eui;Han, Chul-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 1998
  • In the flue curing process, the wet bulb temperature is usually controlled at a constant level. To improve the quality of flue cured leaves, we studied the effect of the cyclic change of wet bulb temperature at the yellowing stage of flue curing on physical properties of cured leaves. The wet bulb temperature was automatically controlled between preset high (38℃) and low point (35℃) every one hour cyclically. As a result, the acceleration of the increase in the physical properties of cured leaves were observed. The leaves cured by this method were more or less orange in color, better bodied, and less brittle compared with the leaves produced by conventional curing. However, the leaves cured by this method had a little sharpness and harshness. As to the physical properties, there was decreased in occurrence of flat leaves than that of conventional ones. On the other hand, in case of cyclic curing method, increase of price per kg reached to 2-3% compared with those of conventional ones.

  • PDF

The Effects of Curing Environment and Submerged Pump Pressure on the Strength of High-Strength Grout (양생환경 및 수중펌프압송이 고강도 그라우트의 강도에 미치는 영향)

  • Kim, Beom-Hwi;Son, Da-Som;Yi, Chong-Ku
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.191-192
    • /
    • 2023
  • In recent years, the use of high-strength grout has gained popularity in offshore wind power generation complexes for facility foundations and bridges. These marine wind farms require support for horizontal loads from wind and waves. To ensure the strength of the grout produced in environments similar to the actual placing site, this study investigated the curing of high-strength grout discharged through pump pressure in various environments, and examined the difference in strength according to different variables. Compressive strength measurements revealed that the core specimen collected from the bottom (3cm) and uppermost (50cm) of the specimen exhibited lower strength compared to other height specimens, while the core specimen obtained from the corner exhibited lower strength compared to the center. These findings suggest that the strength difference between the center and the corner is more pronounced when curing at low temperatures. This effect is greater than the strength reduction that typically occurs during low-temperature curing, and thus, necessitates careful attention in similar construction environments.

  • PDF

Properties of Flexural Strength of Extrusion Molding Concrete Panel According to the Curing Conditions (양생조건에 따른 압출성형콘크리트 패널의 휨강도 특성)

  • Jung, Eun-Hye;Choi, Hun-Gug;Kim, Jae-Won;Seo, Jung-Pil;Park, Sun-Gyu;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.441-444
    • /
    • 2006
  • Extrusion molding concrete panel is cured two times, that is the steam curing at atmospheric pressure and a high-pressure steam curing(autoclaving). Steam curing at atmospheric pressure is done before autoclaving and to acquire the proper strength for treat in process. Though this curing is the important factor on the quality of product and the speed in manufacturing process, it was not evaluated properly so far. Because of ignorance about curing, some engineers even think that the dry curing is better than the steam curing. This study is to investigate the properties of specimen according to variation of curing conditions in the coring chamber such as laboratory scale, pilot plant, and commercial plant. As estimating, in case of steam curing at atmospheric pressure to make extrusion molding concrete panel, moisture curing is better than dry curing and the desirable maximum temperature in curing chamber is about $50^{\circ}C$.

  • PDF

An experimental Study on the Strength Control of High Fluidity Concrete by Maturity (적산온도방식에 의한 고유동콘크리트의 강도관리에 관한 실험적 연구)

  • 김무한;남재현;김규용;길배수;한장현
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength with time as a result of the cement hydration and, thus the rate of hydration, as in any chemical reaction, depends primarily on the concrete temperature during hydration. Thus, the strength of concrete is function of its time-temperature history. This goals of the present study are to investigate a relationship between strength of high-fluidity concrete and maturity that is expressed as a function of an integral of the curing period and temperature, predict strength of concrete.

An Experimental Study on Quality Management of Strength in High Strength Mass Concrete Structure Using Thermal Insulation Material (보온재를 사용한 고강도 매스 콘크리트의 품질관리에 관한 연구)

  • Cho, Kyu-Hyun;Back, Min-Soo;Kim, Sung-Sik;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • This study is a basic experiment on quality management of the compression strength of high strength concrete, aiming. at quality management of high strength mass concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Different from ordinary concrete, high strength concrete generally shows the temperature high rising caused by hydration heat inside the concrete. It is known that, in mass concrete, thermal stress occurs due to the difference in temperature between the inside and the outside, which causes a significant difference in compression strength between structure beams and managerial test pieces. It is also reported that there is a large difference between the compression strength of cylindrical managerial test pieces of standard underwater curing and the strength of structure beam concrete. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created thermal insulation curing box and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

Effect of curing temperature and blast furnace slag concrete on concrete strength development (양생온도가 고로슬래그 콘크리트의 강도발현에 미치는 영향분석)

  • Lee, Kyu-Dong;Jun, Myeong-Il;Lee, Chang-Soo;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • The present work is attempt to evaluate the temperature dependence of blast furnace slag concrete(BFSC) based on the concrete strength cured with different curing temperatures and ages. A equivalent substitution index(ESI) was induced to explain temperature dependence of concrete quantitatively as well as concrete strength. The results from compressive strength showed substantial crossover effect. which is the phenomenon that the compressive strength cured at low temperature becomes stronger than the one cured at high temperature. The crossover effect found more definitely on BFSC than plain concrete.. The ESI became 1.1 and 1.0 for the BFSC cured at $20^{\circ}C$ and $30^{\circ}C$ after age of 56 days, respectively. Which means that the contribution to strength development of blast furnace slag per unit mass is stronger than that of the Portland cement. It was considered therefore that the optimum curing temperature for BFSC is $20^{\circ}C$.

  • PDF