• Title/Summary/Keyword: high curing temperature

Search Result 505, Processing Time 0.032 seconds

A Experimental Study on the Properties of Concrete Strength According to Curing Condition (양생조건에 따른 콘크리트 강도 특성에 관한 실험적 연구)

  • Joung Won Seoup;Kim Kang Sik;Park Jae Woo;Noh Jea Myoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.441-444
    • /
    • 2005
  • Our country has experienced variations in temperature as belong to the area of the continental climate that shows four significant seasons. These occur immense difficulty on the period, cost, quality of construction. As the hydration of cement processes, the strength of concrete is developed. In order to improve the quality of concrete, various conditions including temperature and humidity should be maintained appropriately and concrete itself should be cured sufficiently. In the early age, the strength of concrete is developed remarkably. However, the hydration is accelerated too much in high temperature or delayed too much in low temperature, so the quality can be changed and It can fail to get the objective strength. This paper aims to offer the data, necessary to the quality control handbook.

  • PDF

Applications of Cure Monitoring Techniques by Using Fiber Optic Strain Sensors to Autoclave, FW and Rm Molding Methods

  • Fukuda, Takehito;Kosaka, Tatsuro;Osaka, Katsuhiko
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.47-58
    • /
    • 2001
  • This paper describes applications of cure monitoring techniques by using embedded fiber optic strain sensors, which are extrinsic Fabry-Perot interoferometric (EFPI) and/or fiber Bra99 grating (FBG) sensors, to three kinds of molding methods of autoclave, FW and RTM molding methods. In these applications, internal strain of high-temperature curing resin was monitored by EFPI sensors. From theme experimental results, it was shown that strain caused by thermal shrink at cooling stage could be measured well. In addition, several specific matters to these molding methods were considered. As thor an autoclave molding of unidirectional FRP laminates, it was confirmed that off-axis strain of unidirectional FRP could be monitored by EFPI sensors. As for FW molding using room-temperature (RT) cured resin, it was found that the strain outputs from EFPI sensors represented curing shrinkage as well as thermal strain and the convergence meant finish of cure reaction. It was also shown that this curing shrinkage should be evaluated with consideration on logarithmic change in stiffness of matrix resin. As for a RTM melding, both EFPI and FBC sensors were employed to measure strain. The results showed that FBG sensors hale also good potential for strain monitoring at cooling stage, while the non-uniform thermal residual strain of textile affected the FBG spectrum after molding. This study has proven that embedded fiber optic strain sensors hale practical ability of cure monitoring of FRP. However, development of automatic installation methods of sensors remains as a problem to be solved for applications to practical products.

  • PDF

Development of Salted Semi-dried Common Gray Mullet Mugil cephalus using Response Surface Methodology (Response Surface Methodology를 이용한 숭어(Mugil cephalus) 반염건품의 개발)

  • Park, Kwon Hyun;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.839-848
    • /
    • 2015
  • This study examined the optimal salting drying method and processing conditions (salt concentration, curing time, dry temperature, and drying time) for preparing salted semi-dried common gray mullet (SSD-CGM) Mugil cephalus based on the moisture content, salinity, and overall acceptance using response surface methodology (RSM). The moisture content, salinity, and overall acceptance of SSD-CGM prepared with different salting methods revealed that dry salting was the optimal salting method for preparing high-quality SSD-CGM. The optimal drying method for preparing high-quality SSD-CGM based on the drying velocity and sensory color was hot air-blast drying. The results of the RSM program indicated that the optimal independent variables ($X_1$, salt concentration; $X_2$, curing time; $X_3$, dry temperature; $X_4$, drying time) based on the dependent variables ($Y_1$, moisture content; $Y_2$, salinity; $Y_3$, overall acceptance) for high-quality SSD-CGM were 5.6% for $X_1$, 2.7 h for $X_2$, $47.0^{\circ}C$ for $X_3$, and 8.5 h for $X_4$ for uncoded values. The predicted values of $Y_1$, $Y_2$, and $Y_3$ for SSD-CGM prepared under optimal conditions were 54.4%, 4.2%, and 6.3, respectively, while the experimental values were $55.2{\pm}1.0%$, $4.1{\pm}0.3%$ and $6.7{\pm}0.8$. The actual and predicted values did not differ.

Preparation and Physical Properties of High-Solid Coatings by Acrylic Resins and Hexamethylene Diisocyanate-Biuret (아크릴수지와 헥사메틸렌 디이소시아네이트-뷰렛에 의한 고 고형분 도료의 제조 및 도막물성 연구)

  • 유혁재;정동진;박홍수;김성길;임완빈
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.273-280
    • /
    • 2004
  • Acrylic resins (ethyl methacrylate-2-hydroxypropyl methacrylate-n-butyl acrylate-acrylic acid EHBCs) containing 80% of solid were synthesized. Then, high-solid coatings (ethyl methacrylate-2-hydroxypropyl methacrylate-n-butyl acrylate-acrylic acid/hexamethylene diisocyanate-biuret : EHBCNs) were prepared by curing of the acrylic resin with curing agent hexamethylene diisocyanate-biuret at room temperature. The cure time of prepared coatings EHBCN-4 (EHBC-4 : $T_{g}$ = $0^{\circ}C$) and EHBCN-7 (EHBC-7 : $T_{g}$ = 3$0^{\circ}C$), measured by rigid-body pendulum method, was recorded 6.2 hours and 4.5 hours, respectively. Dynamic viscoelastic experiment revealed the glass transition temperature of EHBCN-4 and EHBCN-7 to be $14^{\circ}C$ and $39^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various properties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.

Characteristics of electrically conductive adhesives filled with silver-coated copper

  • Nishikawa, Hiroshi;Terad, Nobuto;Miyake, Koich;Aoki, Akira;Takemoto, Tadashi
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.217-220
    • /
    • 2009
  • Conductive adhesives have been investigated for use in microelectronics packaging as a lead-free solder substitute due to their advantages, such as low bonding temperature. However, high resistivity and poor mechanical behavior may be the limiting factors for the development of conductive adhesives. The metal fillers and the polymer resins provide electrical and mechanical interconnections between surface mount device components and a substrate. As metal fillers used in conductive adhesives, silver is the most commonly used due to its high conductivity and the stability. However the cost of conductive adhesives with silver fillers is much higher than usual lead-free solders and silver has poor electro-migration performance. So, copper can be a promising candidate for conductive filler metal due to its low resistivity and low cost, but oxidation causes this metal to lose its conductivity. In this study, electrically conductive adhesives (ECAs) using surface modified copper fillers were developed. Especially, in order to overcome the problem associated with the oxidation of copper, copper particles were coated with silver, and the silver-coated copper was tested as a filler metal. Especially the effect of silver coating on the electrical resistance just after curing and after aging was investigated. As a result, it was found that the electrical resistance of ECA with silver-coated copper filler was clearly lower and more stable than that of ECA with pure copper filler after curing process. And, during high temperature storage test, the degradation rate of electrical resistance for ECA with silver coated copper filler was quite slower than that for ECA with pure copper filler.

  • PDF

Effect of Mixing and Placing in Hot Weather on Hardened Concrete Properties

  • Ham, Suyun;Oh, Taekeun
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2013
  • Portland cement concrete exposed to high temperatures during mixing, transporting, casting, finishing, and curing can develop undesirable characteristics. Applicable requirements for such the hot weather concrete differ from country to country and government agencies. The current study is an attempt at evaluating the hardened properties of the concrete exposed to hot weather in fresh state. First of all, this study reviews the current state of understanding and practice for hot weather concrete placement in US and then roadway sites with suspected hot weather concrete problems were investigated. Core samples were obtained from the field locations and were analyzed by standard resonance frequency analysis and the boil test. Based on the results, there does not appear to be systematic evidence of frequent cracking problems related to high temperature placement. Thus, the suspicious deteriorations which are referable to hot weather concreting would be due to other factors.

A Proposal for Predicting the Compressive Strength of Ultra-high Performance Concrete Using Equivalent Age (등가재령을 활용한 초고성능 콘크리트의 압축강도 예측식 제안)

  • Baek, Sung-Jin;Park. Jae-Woong;Han Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.149-150
    • /
    • 2023
  • This study proposes the most suitable strength prediction model equation for UHPC by calculating the apparent activation energy of UHPC according to the curing temperature and deriving the integrated temperature and compressive strength prediction equation. The results are summarized as follows. The apparent activation energy was calculated using the Arrhenius function, which was calculated as 21.09 KJ/mol. A model equation suitable for UHPC was calculated, and when the Flowman model equation was used, it was confirmed that it was suitable for the properties of UHPC using a condensation promoting super plasticizing agent.

  • PDF

Dimensional Stability and Mechanical Properties of Citric Acid Impregnated Samama Wood (Anthocephalus macrophyllus (Roxb) Havil) at High Curing Temperatures

  • Sarah AUGUSTINA;Sari Delviana MARBUN;SUDARMANTO;NARTO;Deazy Rachmi TRISATYA;Eko Budi SANTOSO;Dhimas PRAMADANI;Nanda Nur AFNI;Tushliha Ayyuni FARIHA;Gabriel Wiwinda L. TOBING;Wasrin SYAFI'I;Tekat Dwi CAHYONO;Eka NOVRIYANTI;Muhammad BULA;Adik BAHANAWAN;Prabu Satria SEJATI;Nam Hun KIM;Wahyu DWIANTO;Philippe GERARDIN
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.431-446
    • /
    • 2023
  • Samama wood (Anthocephalus macrophyllus (Roxb) Havil) is a fast-growing and lesser-utilized wood species that has inferior properties; therefore, its quality needs to be improved. This research aimed to determine the effect of citric acid impregnation at high curing temperatures on the dimensional stability and mechanical properties of wood. Citric acid solution with 10% concentration (w/w) was impregnated into wood samples by vacuum-pressure method (-0.5 cmHg, 30 min; 0.7 MPa, 3 h), followed by curing process at 140℃, 160℃, and 180℃ of temperature for 1 h. In comparison, the other wood samples were heat treated at the same temperatures and time. The results showed that the increase in curing and heat temperatures for both treatments were directly proportional to the dimensional stability, but inversely proportional to the mechanical properties. Citric acid impregnated had higher density, dimensional stability, and mechanical properties, except for modulus of rupture, than that of heat treatment. The optimum temperature is suggested at 160℃ in both treatments.

Physical Properties of High-Solid Coatings with 80% Solid Contents Acrylic Resins Containing Caprolactone Group and HMDI-Trimer (카프로락톤기 함유 80% 고형분인 아크릴수지와 HMDI-Trimer에 의한 하이솔리드 도료의 도막물성)

  • Park, Hong-Soo;Jung, Choong-Ho;Jo, Hye-Jin;Shim, Il-Woo;Kim, Seung-Jin;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.110-114
    • /
    • 2006
  • The high-solid coatings were prepared by blending the synthesized acrylic resin in the previous paper, and hexamethylene diisocyanate-trimer and curing it at room temperature. The characterization of the films of the prepared coatings was performed. The $60^{\circ}$ specular gloss, impact resistance, cross-hatch adhesion, and heat resistance of the films proved to be good, and the pencil hardness, drying time, and pot-life proved to be slightly poor. From a viscoelastic measurement using a rigid-body pendulum, curing was accelerated with the Tg value.