DOI QR코드

DOI QR Code

Dimensional Stability and Mechanical Properties of Citric Acid Impregnated Samama Wood (Anthocephalus macrophyllus (Roxb) Havil) at High Curing Temperatures

  • Sarah AUGUSTINA (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Sari Delviana MARBUN (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • SUDARMANTO (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • NARTO (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Deazy Rachmi TRISATYA (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Eko Budi SANTOSO (Faculty of Forestry and Environment, IPB University) ;
  • Dhimas PRAMADANI (Faculty of Forestry and Environment, IPB University) ;
  • Nanda Nur AFNI (Faculty of Forestry and Environment, IPB University) ;
  • Tushliha Ayyuni FARIHA (Faculty of Forestry and Environment, IPB University) ;
  • Gabriel Wiwinda L. TOBING (Faculty of Forestry and Environment, IPB University) ;
  • Wasrin SYAFI'I (Faculty of Forestry and Environment, IPB University) ;
  • Tekat Dwi CAHYONO (Faculty of Agriculture and Forestry, Universitas Darussalam Ambon) ;
  • Eka NOVRIYANTI (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Muhammad BULA (Faculty of Engineering, Universitas Iqra Buru) ;
  • Adik BAHANAWAN (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Prabu Satria SEJATI (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Nam Hun KIM (Department of Forest Biomaterials Engineering, College of Forest and Environmental Science, Kangwon National University) ;
  • Wahyu DWIANTO (Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN)) ;
  • Philippe GERARDIN (Laboratory of Research and Wood Material (LERMAB), Universite de Lorraine)
  • Received : 2023.07.07
  • Accepted : 2023.10.05
  • Published : 2023.11.25

Abstract

Samama wood (Anthocephalus macrophyllus (Roxb) Havil) is a fast-growing and lesser-utilized wood species that has inferior properties; therefore, its quality needs to be improved. This research aimed to determine the effect of citric acid impregnation at high curing temperatures on the dimensional stability and mechanical properties of wood. Citric acid solution with 10% concentration (w/w) was impregnated into wood samples by vacuum-pressure method (-0.5 cmHg, 30 min; 0.7 MPa, 3 h), followed by curing process at 140℃, 160℃, and 180℃ of temperature for 1 h. In comparison, the other wood samples were heat treated at the same temperatures and time. The results showed that the increase in curing and heat temperatures for both treatments were directly proportional to the dimensional stability, but inversely proportional to the mechanical properties. Citric acid impregnated had higher density, dimensional stability, and mechanical properties, except for modulus of rupture, than that of heat treatment. The optimum temperature is suggested at 160℃ in both treatments.

Keywords

Acknowledgement

We thank the Deputy for Research and Innovation Facilitation, National Research and Innovation Agency for the funding of Research and Innovation for Advanced Indonesia (RIIM-BRIN), Educational Fund Management Institution (LPDP), Research Center for Biomass and Bioproducts, the National Research and Innovation Agency (BRIN), Indonesia for research facilities, and Talent Management BRIN for conducting Post-Doctoral Program.

References

  1. Augustina, S., Darmawan, T., Sudarmanto, Narto, N., Bahanawan, A., Adi, D.S., Triwibowo, D., Amin, Y., Sofianto, I.A., Sejati, P.S., Dwianto, W., Witjaksono, Widyorini, R., Gerardin, P., Marbun, S.D. 2023a. Effects of succinic acid impregnation on physical properties of sapwood and heartwood from plantation-grown short-rotation teak. Southern Forests: A Journal of Forest Science 85(2): 1-10. https://doi.org/10.2989/20702620.2023.2220893
  2. Augustina, S., Dwianto, W., Lubis, M.A.R., Damayanti, R., Sudarwoko Adi, D., Malik, J., Wahyudi, I., Darmawan, W., Gerardin, P., Marbun, S.D., Isoda, H. 2023b. Effect of anatomical structure on dimensional stability of low molecular weight phenolformaldehyde impregnated wood. Wood Research 68(3): 425-443. https://doi.org/10.37763/wr.1336-4561/68.3.425443
  3. Augustina, S., Dwianto, W., Wahyudi, I., Gerardin, P., Marbun, S.D. 2023c. Wood impregnation in relation to its mechanisms and properties enhancement. BioResources 18(2): 4332-4372. https://doi.org/10.15376/biores.18.2.Augustina
  4. Awoyemi, L., Westermark, U. 2005. Effects of borate impregnation on the response of wood strength to heat treatment. Wood Science and Technology 39(6): 484-491. https://doi.org/10.1007/s00226-005-0001-5
  5. Bekhta, P., Niemz, P. 2003. Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57(5): 539-546. https://doi.org/10.1515/HF.2003.080
  6. Berube, M.A., Schorr, D., Ball, R.J., Landry, V., Blanchet, P. 2018. Determination of in situ esterification parameters of citric acid-glycerol based polymers for wood impregnation. Journal of Polymers and the Environment 26(3): 970-979. https://doi.org/10.1007/s10924-017-1011-8
  7. Bourgois, J., Bartholin, M.C., Guyonnet, R. 1989. Thermal treatment of wood: Analysis of the obtained product. Wood Science and Technology 23(4): 303-310. https://doi.org/10.1007/BF00353246
  8. British Standard [BS]. 1957. Methods of Testing Small Clear Specimens of Timber. BS 373:1957. British Standards Institution, London, UK.
  9. Cahyono, T.D., Darmawan, W., Priadi, T., Iswanto, A.H. 2020. Flexural properties of heat-treatment samama (Anthocephalus macrophyllus) wood impregnated by boron and methyl metacrylate. Journal of the Korean Wood Science and Technology 48(1): 76-85 https://doi.org/10.5658/WOOD.2020.48.1.76
  10. Cahyono, T.D., Dwianto, W., Darmawan, W., Sakagami, H. 2022. Change in the surface roughness and surface free energy of samama (Anthocephalus macrophyllus) after citric acid impregnation through precompression method. Journal of Adhesion Science and Technology 36(6): 654-665. https://doi.org/10.1080/01694243.2021.1934280
  11. Cahyono, T.D., Ohorella, S., Febrianto, F. 2012. Sifat fisis dan mekanis kayu samama (Antocephalus macrophylus Roxb.) dari Kepulauan Maluku. Jurnal ilmu dan Teknologi Kayu Tropis 10(1): 28-39.
  12. Cahyono, T.D., Wahyudi, I., Priadi, T., Febrianto, F., Bahtiar, E.T., Novriyanti, E. 2016. Analysis on wood quality, geometry factor, and their effects on lathe check of samama (Anthocephalus macrophyllus) veneer. Journal of the Korean Wood Science and Technology 44(6): 828-841. https://doi.org/10.5658/WOOD.2016.44.6.828
  13. Chaouch, M., Dumarcay, S., Petrissans, A., Petrissans, M., Gerardin, P. 2013. Effect of heat treatment intensity on some conferred properties of different European softwood and hardwood species. Wood Science and Technology 47(4): 663-673. https://doi.org/10.1007/s00226-013-0533-z
  14. Czajkowski, L., Olek, W., Weres, J. 2020. Effects of heat treatment on thermal properties of European beech wood. European Journal of Wood and Wood Products 78(3): 425-431. https://doi.org/10.1007/s00107-020-01525-w
  15. Dirna, F.C., Rahayu, I., Zaini, L.H., Darmawan, W., Prihatini, E. 2020. Improvement of fast-growing wood species characteristics by MEG and nano SiO2 impregnation. Journal of the Korean Wood Science and Technology 48(1): 41-49. https://doi.org/10.5658/WOOD.2020.48.1.41
  16. Dos Santos, D.V.B., De Moura, L.F., Brito, J.O. 2014. Effect of heat treatment on color, weight loss, specific gravity and equilibrium moisture content of two low market valued tropical woods. Wood Research 59(2): 253-264.
  17. Esteves, B.M., Pereira, H.M. 2009. Wood modification by heat treatment: A review. BioResources 4(1): 370-404. https://doi.org/10.15376/biores.4.1.Esteves
  18. Feng, X., Xiao, Z., Sui, S., Wang, Q., Xie, Y. 2014. Esterification of wood with citric acid: The catalytic effects of sodium hypophosphite (SHP). Holzforschung 68(4): 427-433. https://doi.org/10.1515/hf-2013-0122
  19. Guller, B. 2012. Effects of heat treatment on density, dimensional stability and color of Pinus nigra wood. African Journal of Biotechnology 11(9): 2204-2209.
  20. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  21. Hadi, Y.S., Massijaya, M.Y., Zaini, L.H., Pari, R. 2019. Physical and mechanical properties of methyl methacrylate-impregnated wood from three fast-growing tropical tree species. Journal of the Korean Wood Science and Technology 47(3): 324-335. https://doi.org/10.5658/WOOD.2019.47.3.324
  22. Hill, C.A.S. 2006. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, West Sussex, UK.
  23. Hill, C.A.S. 2007. Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons, Hoboken, NJ, USA.
  24. Karimi, K., Shafiei, M., Kumar, R. 2013. Progress in Physical and Chemical Pretreatment of Lignocellulosic Biomass. In: Biofuel Technologies, Ed. by Gupta, V.K. and Tuohy, M.G. Springer, Berlin, Germany.
  25. Katovic, D., Trajkovic, J., Bischof Vukusic, S., Sefc, B. 2004. Alternative agents and methods for chemical modification of wood. Drvna Industrija 55(4): 175-180.
  26. Kim, Y.K., Kwon, G.J., Kim, A.R., Lee, H.S., Purusatama, B., Lee, S.H., Kang, C.W., Kim, N.H. 2018. Effects of heat treatment on the characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.) Steud.) wood grown in Korea. Journal of the Korean Wood Science and Technology 46(5): 511-526. https://doi.org/10.5658/WOOD.2018.46.5.511
  27. Kocaefe, D., Poncsak, S., Boluk, Y. 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources 3(2): 517-537. https://doi.org/10.15376/biores.3.2.517-537
  28. Laksono, G.D., Rahayu, I.S., Karlinasari, L., Darmawan, W., Prihatini, E. 2023. Characteristics of magnetic sengon wood impregnated with nano Fe3O4 and furfuryl alcohol. Journal of the Korean Wood Science and Technology 51(1): 1-13. https://doi.org/10.5658/WOOD.2023.51.1.1
  29. Lee, S.H., Tahir, P.M., Lum, W.C., Tan, L.P., Bawon, P., Park, B.D., Al Edrus, S.S.O., Abdullah, U.H. 2020. A review on citric acid as green modifying agent and binder for wood. Polymers 12(8): 1692.
  30. Lembaga Penelitian dan Pengembangan. 2011. Riap Tumbuh Kayu Samama di Maluku. Litbang PT Mangole, Ternate, Indonesia.
  31. Lestari, Y.P.I., Triadisti, N., Zamzani, I. 2021. Pengaruh konsentrasi NaOH dan H2SO4 terhadap isolasi dan identifikasi -selulosa menggunakan delignifikasi serbuk eceng gondok (Eichhornia crassipes). Journal of Current Pharmaceutical Sciences 5(1): 429-438.
  32. Mihulja, G., Zivkovic, V., Poljak, D., Sefc, B., Sedlar, T. 2021. Influence of citric acid on the bond strength of beech wood. Polymers 13(16): 2801.
  33. Peng, Q., Ormondroyd, G., Spear, M., Chang, W.S. 2022. The effect of the changes in chemical composition due to thermal treatment on the mechanical properties of Pinus densiflora. Construction and Building Materials 358: 129303.
  34. Poncsak, S., Kocaefe, D., Bouazara, M., Pichette, A. 2006. Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology 40(8): 647-663. https://doi.org/10.1007/s00226-006-0082-9
  35. Priadi, T., Orfian, G., Cahyono, T.D., Iswanto, A.H. 2020. Dimensional stability, color change, and durability of boron-MMA treated red jabon (Antochephalus macrophyllus) wood. Journal of the Korean Wood Science and Technology 48(3): 315-325. https://doi.org/10.5658/WOOD.2020.48.3.315
  36. Priadi, T., Putra, G.S., Cahyono, T.D. 2023. Reliability of the impreganated boron compounds, citric acid-and heat-treated samama (Anthocephalus macrophyllus) wood against the fungal and termite attacks. Journal of the Korean Wood Science and Technology 51(1): 49-57. https://doi.org/10.5658/WOOD.2023.51.1.49
  37. Rahayu, I., Darmawan, W., Zaini, L.H., Prihatini, E. 2019. Characteristics of fast-growing wood impregnated with nanoparticles. Journal of Forestry Research 31(2): 677-685. https://doi.org/10.1007/s11676-019-00902-3
  38. Rautkari, L., Honkanen, J., Hill, C.A.S., Ridley-Ellis, D., Hughes, M. 2014. Mechanical and physical properties of thermally modified Scots pine wood in high pressure reactor under saturated steam at 120, 150 and 180℃. European Journal of Wood and Wood Products 72(1): 33-41. https://doi.org/10.1007/s00107-013-0749-5
  39. Rowell, R.M., Ellis, W.D. 1978. Determination of dimensional stabilization of wood using the water-soak method. Wood and Fiber 10(2): 104-111.
  40. Rumbaremata, A., Cahyono, T.D., Darmawan, T., Kusumah, S.S., Akbar, F., Dwianto, W. 2019. Peningkatan kerapatan kayu samama melalui prekompresi asam sitrat. Jurnal Ilmu dan Teknologi Kayu Tropis 17(2): 122-133. https://doi.org/10.51850/jitkt.v17i2.418
  41. Schulz, H.R., Acosta, A.P., Barbosa, K.T., Junior, M.A.P.S., Gallio, E., Delucis, R.A., Gatto, D.A. 2021. Chemical, mechanical, thermal, and colorimetric features of the thermally treated Eucalyptus grandis wood planted in Brazil. Journal of the Korean Wood Science and Technology 49(3): 226-233. https://doi.org/10.5658/WOOD.2021.49.3.226
  42. Siregar, M.S. 2011. Penguatan sifat mekanik kayu kelapa sawit dengan teknik impregnasi reaktif monomer stirena. Agrium Jurnal Ilmu Pertanian 16(3): 147-152.
  43. Sumardi, I., Darwis, A., Saad, S., Rofii, M.N. 2020. Quality enhancement of falcataria-wood through impregnation. Journal of the Korean Wood Science and Technology 48(5): 722-731. https://doi.org/10.5658/WOOD.2020.48.5.722
  44. Tuong, V.M., Li, J. 2010. Effect of heat treatment on the change in color and dimensional stability of acacia hybrid wood. BioResources 5(2): 1257-1267. https://doi.org/10.15376/biores.5.2.1257-1267
  45. Umemura, K., Ueda, T., Munawar, S.S., Kawai, S. 2011. Application of citric acid as natural adhesive for wood. Journal of Applied Polymer Science 123(4): 1991-1996. https://doi.org/10.1002/app.34708
  46. Widsten, P., Dooley, N., Parr, R., Capricho, J., Suckling, I. 2014. Citric acid crosslinking of paper products for improved high-humidity performance. Carbohydrate Polymers 101: 998-1004. https://doi.org/10.1016/j.carbpol.2013.10.002
  47. Widyorini, R., Yudha, A.P., Lukmandaru, G., Prayitno, T.A. 2015. Sifat fisika mekanika dan ketahanan papan partikel bambu dengan perekat asam sitrat terhadap serangan rayap kayu kering. Jurnal Ilmu Kehutanan 9(1): 12-22.
  48. Wulandari, T., Asri, A., Faryuni, I.D. 2020. Sifat fisis dan mekanis papan partikel limbah kulit buah kakao berpenguat batang kayu jabon. Prisma Fisika 8(1): 33-39. https://doi.org/10.26418/pf.v8i1.40163
  49. Zhan, T., Liu, Z., Peng, H., Jiang, J., Zhang, Y., Lyu, J. 2021. Meta-analysis of anti-swelling efficiency (ASE) of heat-treated wood. European Journal of Wood and Wood Products 79(4): 1031-1034. https://doi.org/10.1007/s00107-021-01691-5