• Title/Summary/Keyword: high critical current density

검색결과 263건 처리시간 0.029초

고특성 REBCO 초전도 박막 제조를 위한 새로운 MOD 전구 용액 제조 (New MOD solution for the preparation of high $J_c$ REBCO superconducting films)

  • 김병주;홍계원;이희균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2001-2003
    • /
    • 2005
  • Various organic acid were used in order to prepare new metalorganic deposition solution for high quality $REBa_2Cu_3O_{7-{\delta}}$ (RE=Y, Eu, Gd) films. Prepared fluorine free MO precursor solution was coated on single crystal (001) $LaAlO_3$ (LAO) by dip coating method. Processing parameters such as oxygen partial pressure, water vapor, ramping rate and pyrolysis temperature etc havebeen controlled in order to make high $J_c$ films with a good epitaxial relationship with substrate. 0.5 micron-thick film was obtained by single coating and no crack appeared after calcination. Oxygen partial pressure was varied in the range of $100{\sim}1,000 ppm$ and conversion heat treatment was carried out at the temperature of $725{\sim}765^{\circ}C$. A critical transition temperature $(T_{c0})$ of 90K and a critical transport current density $(J_c)$ of $>0.5MA/cm^2$ (77K and self-field) were demonstrated for the YBCO film on (001) oriented LAO substrates with a thickness of 0.5 micron. $I_c$ was determined by utilizing a transport measurement. SEM and XRD investigations confirmed that films were grown epitaxially onto the LAO single crystal substrate. It is thought that fluorine free new MOD solutionis promising for high quality REBCO films.

  • PDF

Microstructural properties of Pt-doped $YBa_{2}Cu_{3}O_{7-x}$ high $T_c$ superconductor prepared by melting method.

  • Song, Jin-Tae
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 추계학술발표강연 및 논문개요집
    • /
    • pp.16-16
    • /
    • 1992
  • We have studied the effect of platinum addition on the supercon ducting properties of YB $a_2$C $u_3$$O_{7-x}$ (123) compound and elucidated the mechanism of fine dispersion of $Y_2$BaCu $O_{5}$(211) particles in YB $a_2$C $u_3$$O_{7-x}$ superconductor prepared by melting method from the metallurgical point of view. In this study, BaCu $O_2$ and CuO-rich phase unreacted during the peritecitc reaction markedly decreased by the 211 powder addition. The 211 particle of Pt-fee sintered samples exhibited 8~10$\mu$m in size, but in 1wt%Pt-added sample, 211 particles were finely dispersed in 123 matrix and the size of 211 particle was about 1~2$\mu$m. And, the critical temperature( $T_{c. zero}$) of Pt doped samples was 91.5K and the transport critical current density ( $J_{c}$) of Pt-doped samples was much more than 10$^4$A/$\textrm{cm}^2$. The high $J_{c}$ and fine dispersion of 211 particles of Pt doped YB $a_2$C $u_3$$O_{7-x}$ superconductor are attributed to $Ba_4$CuP $t_2$ $O_{8}$ compounds formed during the partial melting, which were considered als nucleation sites of 211 particles, rather than Pt inself.han Pt inself.

  • PDF

YBCO 박막을 이용한 배전급 저항형 초전도 한류기 (Resistive Superconducting Fault Current Limiters for Distribution systems using YBCO thin films)

  • 이방욱;박권배;강종성;김호민;오일성;심정욱;현옥배
    • Progress in Superconductivity
    • /
    • 제7권2호
    • /
    • pp.114-119
    • /
    • 2006
  • High critical current density, high n value, multiple faults endurances, and fast recovery characteristics of YBCO thin films are very attractive characteristics for developing resistive type superconducting fault current limiters. But due to the limited current and voltage ratings of one YBCO module, it is needed to construct series and parallel module connections for high capacity electric networks. Especially for distribution network, more than 30 units should be connected in series to meet voltage level. So in order to construct distribution-level superconducting fault current limiter, simultaneous quench in one YBCO thin films should be realized, and furthermore, quench should be occurred in all fault current limiting units equally to avoid local heating and failures. In this paper, we proposed optimum design of YBCO thin films for fault current limiting module and technical method using shunt resistor to achieve simultaneous quench between multi current limiting units. From the analytical and the experimental results, optimal current path and thickness of shunt material was determined for YBCO thin films and shunt resistor between modules was developed. Finally, 14 kV one phase resistive fault current limiter using multi YBCO thin films was constructed and it was possible to get satisfactory test results.

  • PDF

Optical imaging methods for qualification of superconducting wires

  • Kim, Gracia;Jin, Hye-Jin;Jo, William
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.21-25
    • /
    • 2014
  • In order to develop 2nd generation (2G) high-temperature superconducting (HTS) wires as commercial products, it is necessary to perform a high speed investigation of their superconducting performance. Room-temperature and non-contact optical scanning tools are necessary to verify the microstructure of the superconducting materials, the current flow below the critical temperature, and the critical current density. In this paper, we report our results of an inspection of the electrical transport properties of coated conductors. The samples that we used in our study were highly qualified rare-earth based coated conductors produced via co-evaporation, and $SmBa_2Cu_3O_{7-y}$ (SmBCO) was the superconducting materials used in our studies. A film grown on IBAD-MgO templates shows larger than 400 A/cm at 77 K and a self-field. The local transport properties of the films were investigated by room-temperature imaging by thermal heating. The room-temperature images show structural inhomogeneities on the surface of the films. Bolometric response imaging via low-temperature bolometric microscopy was used to construct the local current mapping at the surface. These results indicate that the non-uniform regions on the surface disturb the current flow, and laser scanning images at room-temperature and at a low-temperature suggest a correlation between the structural properties and transport properties. Thus this method can be effective to evaluate the quality of the coated conductors.

Bi-2212 고온초전도체 튜브의 자기확산에 관한 연구 (An experimental study of magnetic diffusion in Bi-2212 High-Tc supercondutor tube)

  • 정성기;설승윤
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.66-70
    • /
    • 2003
  • Transient magnetic diffusion process in a melt-cast Bi2Sr2CaCu20X(Bi-2212) tube was studied by experimental and numerical analyses. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper. This experiment measure the magnetic flux density in the supercondutor after supply direct-current of Bi-2212 rounded by copper coil. This study was discussed of valid of a previous numerical solution which is compared by the penetrate time and the magnetic flux density difference of between the present results and the numerical solution.

보조전계를 이용한 전기영동 초전도 막의 제작 (Superconducting film fabrication using field Assisted Electrophoresis)

  • 소대화;전용우
    • 한국전기전자재료학회논문지
    • /
    • 제16권2호
    • /
    • pp.157-162
    • /
    • 2003
  • For fabricating high T$\sub$c/ superconducting deposition film, novel electrophoretic deposition (EPD) technique applied to deposit surface charged particles on metal substrate with only d.c field has been studied. However, the electric properties of superconducting film could not be improved easily by this way, because the particles of EPD film were usually deposited randomly on metal substrate without any directional orientation affected to its critical current density. For the purpose of obtaining partcle orientation on the EPD films, the new method modified by a.c. assisted field to the conventional electrophoresis system was investigated to improve the particle deposition density and to increase the contacting area among the particles with highly oriented particle deposition of BSCCO superconducting film.

Stressed High Temperature Superconducting Films

  • Choi, Sung-Jae;Soh, Dea-Wha;Yugay, Klimenty-Nikolaevich
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.268-271
    • /
    • 2002
  • The goal of the research is to study and describe a new stressed state of High Temperature Superconducting (High-Tc) YBCO Films, to create of SQUIDs (Superconducting Quantum Interference Device) on the bases of these Films with maximal sensitivity. The experimental investigation of the stressed films grown by laser ablation method and its properties, the fabrication of the dc-SQUIDs with maximal sensitivity on the bases of the stressed YBCO films were carried out. The stressed film having the value of the critical current density $J_{c}=3{\cdot}10^{5}A/cm^{2}$ was the more stable than others.

  • PDF

엔지니어드 터널베리어 메모리 적용을 위한 $HfO_2$ 층의 전하 트랩핑 특성 (Charge trapping characteristics of high-k $HfO_2$ layer for tunnel barrier engineered nonvolatile memory application)

  • 유희욱;김민수;박군호;오세만;정종완;이영희;정홍배;조원주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.133-133
    • /
    • 2009
  • It is desirable to choose a high-k material having a large band offset with the tunneling oxide and a deep trapping level for use as the charge trapping layer to achieve high PIE (Programming/erasing) speeds and good reliability, respectively. In this paper, charge trapping and tunneling characteristics of high-k hafnium oxide ($HfO_2$) layer with various thicknesses were investigated for applications of tunnel barrier engineered nonvolatile memory. A critical thickness of $HfO_2$ layer for suppressing the charge trapping and enhancing the tunneling sensitivity of tunnel barrier were developed. Also, the charge trap centroid and charge trap density were extracted by constant current stress (CCS) method. As a result, the optimization of $HfO_2$ thickness considerably improved the performances of non-volatile memory(NVM).

  • PDF

Reduction of Leakage Current and Enhancement of Dielectric Properties of Rutile-TiO2 Film Deposited by Plasma-Enhanced Atomic Lay er Deposition

  • Su Min Eun;Ji Hyeon Hwang;Byung Joon Choi
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.283-290
    • /
    • 2024
  • The aggressive scaling of dynamic random-access memory capacitors has increased the need to maintain high capacitance despite the limited physical thickness of electrodes and dielectrics. This makes it essential to use high-k dielectric materials. TiO2 has a large dielectric constant, ranging from 30~75 in the anatase phase to 90~170 in rutile phase. However, it has significant leakage current due to low energy barriers for electron conduction, which is a critical drawback. Suppressing the leakage current while scaling to achieve an equivalent oxide thickness (EOT) below 0.5 nm is necessary to control the influence of interlayers on capacitor performance. For this, Pt and Ru, with their high work function, can be used instead of a conventional TiN substrate to increase the Schottky barrier height. Additionally, forming rutile-TiO2 on RuO2 with excellent lattice compatibility by epitaxial growth can minimize leakage current. Furthermore, plasma-enhanced atomic layer deposition (PEALD) can be used to deposit a uniform thin film with high density and low defects at low temperatures, to reduce the impact of interfacial reactions on electrical properties at high temperatures. In this study, TiO2 was deposited using PEALD, using substrates of Pt and Ru treated with rapid thermal annealing at 500 and 600 ℃, to compare structural, chemical, and electrical characteristics with reference to a TiN substrate. As a result, leakage current was suppressed to around 10-6 A/cm2 at 1 V, and an EOT at the 0.5 nm level was achieved.

THIN FILM TECHNOLOGIES RELATED TO THE HIGH T$_{c}$ SUPERCONDUCTORS

  • Ri, Eui-Jae
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.415-423
    • /
    • 1996
  • Thin film technologies for fabricating SQUIDs involve etching and deposition procedures with the proper substrate materials and $YBa_2Cu_3O_{7-d}$ (YBCO) as the high $T_c$ superconductor. YBCO were prepared on various substrates of MgO, $SrTiO_3$, and $LaAlO_3$ by using off-axis magnetron sputtering methods and annealing in-situ. The parameters of film fabrication processes had been optimized to yield good quality films in terms of the critical temperature $T_c$ and the critical current density $J_c$. The optimized processes yielded $T_C$>90K along with $J_c$>$10_6A$$extrm{cm}^2$ at 77K and>$2\times10_7A/Cm^2$ at 5K. We fabricated step-edge type dc-SQUIDs and directly coupled magnetometers, producing step edges on MgO(100) substrates by etching with Ar-ion beam, depositing YBCO material on them, then patterning them by using ion-milling technique. Circuitizing washer-shape SQUIDs to possess a pair of step-edge junctions of 2-5$\mu$ line width with a high angle>$50^{\circ}C$ , we examined their I-V characteristics thoroughly and Shapiro steps clearly as we irradiate microwaves of 8-20 GHz frequency.

  • PDF