• Title/Summary/Keyword: high aspect ratio structure

Search Result 193, Processing Time 0.033 seconds

Fabrication and Characterization of AAO Template with Variation of the Phosphoric Acid Amount of the Etching Solution (에칭용액의 인산 첨가량에 따른 양극산화 알루미늄 템플레이트의 제작 및 특성)

  • Jo, Ye-Won;Kim, Yong-Jun;Yeo, Jin-Ho;Lee, Sung-Gap;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.448-451
    • /
    • 2014
  • Anodic aluminum oxides (AAO) fabricated by the two-step anodizing process have attracted much attention for the fabrication of nano template because of pore structure with high aspect ratio, low cost process and ease of fabrication. AAOs are characterized by a homogeneous morphology of parallel pores that grow perpendicular to the template surface with a narrow distribution of diameter, length and inter-pores spacing, all of which can be easily controlled by suitably choosing of the anodizing parameters such as pH of the electrolyte, anodizing voltage and duration of anodizing. In this study, AAO templates were characterized by X-ray diffraction and field-emission scanning electron microscope (FE-SEM). The dependence of the pore size change according to the amount of addition of phosphoric acid, which was used to remove the initial alumina oxide layer, was not observed.

Microstructure and Characteristic of Rheocast Al-6.2wt%Si Alloy (Al-6.2wt%Si합금의 리오캐스트 조직과 특성)

  • Lee, Jung-Il;Park, Ji-Ho;Lee, Ho-In;Kim, Moon-Il
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.438-446
    • /
    • 1994
  • The effect of various thermomechanical treatments on the structure and rheological behaviour of Al-6.2wt%Si alloy in its solidification range were investigated using a Searle type high temperature viscometer. During continuous cooling, the viscosity increases gradually with increasing fraction of solidified alloy, until a critical fraction of solidified alloy is reached above which the viscosity sharply increases. The viscosity of the slurry, at a given volume fraction wolid, decreased with increasing shear rate. The size and morphology of primary solid particles during stirring is influenced strongly by shear rates, cooling rates, volume fraction and stirring time of solid. Morphological changes during stirring as a function of solid volume fractions, shear rate and processing time were also reported. In this study, the size of primary solid particles in these alloys consistently increases and the it`s aspect ratio decrease with the increase in fraction solid and decrease in shear rate. Crystal morphology changes from rosette type to spheroid type with the increase in shear rate and solid fraction.

  • PDF

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction (알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

Design and Measurement of Nano-pattern for FIB Reliability Assessment (FIB 신뢰성 평가를 위한 나노패턴의 설계 및 측정)

  • Kang Hyun-Wook;Lee Seung-Jae;Cho Dong-Woo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.24-29
    • /
    • 2005
  • Fm (Focused ion beam) system is one of the most important equipments for the nano-scale machining. Various researches have been performed, since it can etch the material and deposit 3-D structure with high-aspect-ratio in the nanometer scale. In spite of those researches, the definite method for the reliability of FIB system has not been reported. In this paper, we proposed the reliability assessment method through nano-pattern fabrication. In the fabricated nano-pattern, the characteristics of FIB system are included. Using this effect, we tried to assess the FIB reliability. First, we suggested reliability assessment items and nano-patterns. And, to know the suitableness of the proposed method, we fabricated several nano-patterns using Nova200(FEI Company) and SMI2050(SEIKO) which are FIB apparatuses. The fabricated nano-patterns are measured with SEM (Scanning Electron Microscope) and compared with designed dimensions. And the compared results showed that the proposed method is suitable for the assessment of FIB system reliability.

  • PDF

An Investigation on Separation Configurations in Compressor Cascades with Boundary Layer Suction(BLS)

  • Zhang, Hualiang;Tan, Chunqing;Zhang, Dongyang;Wang, Songtao;Wang, Zhongqi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.143-149
    • /
    • 2008
  • A numerical study was performed for a vane of a compressor with a high-turning angle and meridional divergence. At first, the effect of the suction position was discussed. Then, the optimal suction position was applied to the cascades with the aspect ratio of 2.53 and 0.3, respectively, to get the knowledge of the effect of the endwall boundary layer removal on the secondary flow along the blade height. At last, using the critical principles of the three-dimensional separation, the topological structures of the flow patterns of the body surfaces and the separation configurations were discussed in detail. The results show that the largest reduction of the total loss can be achieved when the suction slot is near the suction side. The topological structure as well as the separation configuration varies due to boundary layer removal, which restrains the flow separation at the corner and delays or depresses the separation on the suction surface. Compared with the original cascade, the cascade with the endwall boundary layer removal has a higher blade loading along the most span. Furthermore the flow loss decreases and distributes uniformly along the span.

  • PDF

Using Faster-R-CNN to Improve the Detection Efficiency of Workpiece Irregular Defects

  • Liu, Zhao;Li, Yan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.625-627
    • /
    • 2022
  • In the construction and development of modern industrial production technology, the traditional technology management mode is faced with many problems such as low qualification rates and high application costs. In the research, an improved workpiece defect detection method based on deep learning is proposed, which can control the application cost and improve the detection efficiency of irregular defects. Based on the research of the current situation of deep learning applications, this paper uses the improved Faster R-CNN network structure model as the core detection algorithm to automatically locate and classify the defect areas of the workpiece. Firstly, the robustness of the model was improved by appropriately changing the depth and the number of channels of the backbone network, and the hyperparameters of the improved model were adjusted. Then the deformable convolution is added to improve the detection ability of irregular defects. The final experimental results show that this method's average detection accuracy (mAP) is 4.5% higher than that of other methods. The model with anchor size and aspect ratio (65,129,257,519) and (0.2,0.5,1,1) has the highest defect recognition rate, and the detection accuracy reaches 93.88%.

Structural analysis of flexible wing using linear equivalent model (선형 등가모델을 이용한 유연날개 구조해석)

  • Kim, Sung Joon;Kim, Dong Hyun;Lim, Joosup;Lee, Sang Wook;Kim, Tae-Uk;Kim, Seungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.699-705
    • /
    • 2015
  • Aircraft needs high lift-to-drag ratio and weight reduction of the structure for long endurance flight with a small power. Generally high aspect ratio wing is applied to HALE(High Altitude Long Endurance) aircraft. Also high modulus, and high strength CFRP(Carbon Fiber Reinforced Plastic) has been used in primary structures. and thin mylar(membrane material) film has been applied to skin of wing. As a result, wing is more flexible than the other structures. and the stiffness of thin mylar film has an affect on dynamic stability. In this study, the membrane characteristic of mylar film has been simulated using nonlinear gap elements. And equivalent modeling method using shell elements is presented using the nonlinear simulation result. The linear equivalent model has verified using the results of nonlinear membrane method. Proposed linear equivalent shell model has applied to mode analysis for estimate the effect of mylar mechanical properties on natural frequency.

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF